
Introduction
Background

Dominance Relations
The Other Search Control Operators

Synthesis of Fast Programs for Maximum Segment
Sum Problems

Srinivas Nedunuri & William R. Cook
University of Texas at Austin

October 5, 2009

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Motivation

Given

Behavioral specifications
Pre/Post condition

Synthesize

Efficient algorithms

Primary Tools
Algorithm Theories

Global Search
Local Search
Divide and Conquer

“Calculation” (derivation) of program components

Global Search → Constraint Satisfaction

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

What is Constraint Satisfaction?

Constraint Satisfaction

Given a set of variables, {v}, assign a value, drawn from some
domain Dv , to each variable, in a manner that satisfies a given set
of constraints.

Many problems can be expressed as constraint satisfaction
problems

Knapsack problems
Graph problems
Integer Programming

We want to show that doing so leads to efficient algorithms

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

General versus Specific Constraint Solvers

Not a generic constraint solver

Instead...

Synthesize algorithm for specific constraint-based problem

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Example problem

Maximum Independent Segment Sum (MISS)

Maximize the sum of a selection of elements from a given array,
with the restriction that no two adjacent elements can be selected.

The synthesis approach we follow starts with a formal specification
of the problem.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Format of Specifications

Structure of Specification

An input type, D

A result type, R

A cost type, C

An output condition (postcondition), o : D × R → Boolean

A benefit criterion, profit : D × R → C

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Maximum Independent Segment Sum (MISS)

Instantiation for MISS

D 7→ maxVar : Nat × vals : {Dv} × data : [Int]
Dv = {False,True}

R 7→ m : Map(Nat → Dv)× cs : {Dv}
C 7→ Int
o 7→ λ(x , z). dom(z.m) = {1..(x .maxVar)} ∧ nonAdj(z)

nonAdj = λz. ∀i . 1 ≤ i < #z.m. zi ⇒ ¬zi+1

profit 7→ λ(x , z).
P#z

i=1(zi → xi | 0)

Example

T F F T F T

3 9 -2 -10 0 1 x.data

z.m

1 2 3 4 5 6 1.. x.maxVars

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Solve It Using Search

Take the solution space (potentially infinite) and partition it. Each
element of the partition is called a subspace, and is recursively
partitioned until a singleton space is encountered, called a solution1

Partial Solution or Space (ẑ)

An assignment to some of the variables. Can be extended into a
(complete) solution by assigning to all the variables.

Feasible Solution (z)

A solution which satisfies the output condition

1based on N. Agin, “Optimum Seeking with Branch and Bound”, Mgmt.
Sci. 1966

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Search Tree

zhat_0

subspaces

Extract /= Nothing

. . .
Solution
space

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

An algorithm class

Global Search with Optimization (GSO)

An algorithm class that consists of a program schema
(template) containing operators whose semantics is
axiomatically defined

operators must be instantiated by the user (developer). They
are typically calculated (Dijkstra style)

Two groups of operators: the basic space forming ones and
more advanced ones which control the search.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

The Space Forming Operators

GSO Extension

Operator Type Description

extract D × R → R determines whether the given space

corresponds to a leaf node, returns it if so,

otherwise Nothing

subspaces D × R → {R} partitions the given space into subspaces

v {R × R} if r v s then s is a subspace of r (any

solution contained in s is contained in r)bz0 D→ R forms the initial space (root node)

These can usually be written down by inspection of the problem

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

The Search Control Operators

GSO Extension

Operator Called Type Description

Φ Necessary

Filter

D × R →
Boolean

Necessary condition for a space

to contain feasible solutions

ψ(ξ) Necessary

(Consistent)

Tightener

D × R → R Tightens a given space to

eliminate infeasible solutions.

Preserves all (at least one)

feasible solutions

ub(ib) Upper (Initial)

Bound

D × R → C returns a upper(inital) bound on

the profit of the best solution in

the given space

These are usually derived from their specification by the
application of domain knowledge

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Global Search Optimization: generic algorithm in Haskell

fo :: D -> {R}

fo(x) =

if phi(x , r0(x)) ∧ lb(x, r0(x)) ≤ ib(x)

then f_gso(x, {r0(x)}, {})

else {}

f_gso :: D x {R} x {R} -> {R}

f_gso(x, active, soln) =

if empty(active)

then soln

else let

(r, rest) = arbsplit(active)

soln’ = opt(profit, soln ∪{z | extract(z, r) ∧ o(x,z)})

ok_subs = {propagate(x, s) :

s ∈ subspaces(r)
∧ propagate(x, s) 6= Nothing}

subs’ = {s : s ∈ ok_subs

∧ ub(x, s) ≥ lb(x, soln’)}

in f_gso(x, rest ∪ subs, soln’)

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Global Search Optimization (cont.)

ub :: D x {R} -> C

ub(x, solns) =

if empty(solns) then ib(x) else profit(x, arb(solns))

propagate x r =

if phi(x, r) then (iterateToFixedPoint psi x r) else Nothing

iterateToFixedPoint f x z =

let fz = f(x, z) in

if fz = z then fz else iterateToFixedPoint f x fz

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Operator Instantiations for MISS

We already have D,R,C , o, and cost (from the specification). The
space forming operators can be instantiated by inspection:

Generic Instantiation (CSOT)bz0 7→ λx . {m = ∅, cs = x .vals}
subspaces 7→ λ(x ,bz). {bz ′ : v = chooseVar({1..x .maxVar} − dom(bz.m)),

∃a ∈ bz.cs. bz ′m = bz.m ⊕ (v 7→ a)}
extract 7→ λ(x ,bz). dom(bz.m) = {1..x .maxVar} → bz |Nothing

v 7→ {(bz,bz ′)|bz.m ⊆ bz ′.m}
ib 7→ maxBound

⊕ denotes adding a pair to a map and is defined as

m ⊕ (x 7→ a) , m − {(x , a′)} ∪ {(x , a)}

The search control operators Φ, ψ, ub are given default definitions
(not shown). We now have a working implementation of an
algorithm for MISS.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Are we done?

With this instantiation, the abstract program is correctly
instantiated into a working solver. But it has exponential
complexity! (The search space grows exponentially). Even
with good definitions for the search control operator it still
grows exponentially

So we incorporate a concept that has been used in operations
research for several decades: dominance relations

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Are we done?

With this instantiation, the abstract program is correctly
instantiated into a working solver. But it has exponential
complexity! (The search space grows exponentially). Even
with good definitions for the search control operator it still
grows exponentially

So we incorporate a concept that has been used in operations
research for several decades: dominance relations

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Dominance Relations

What are dominance relations?

Enables the comparison of one partial solution with another to
determine if one of them can be discarded

Given ẑ and ẑ ′ if the best possible solution in ẑ is better than
the best possible solution in ẑ ′ then ẑ ′ can be discarded

Z^ Z^’Dominates?

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Dominance Relations

What are dominance relations?

Enables the comparison of one partial solution with another to
determine if one of them can be discarded

Given ẑ and ẑ ′ if the best possible solution in ẑ is better than
the best possible solution in ẑ ′ then ẑ ′ can be discarded

Z^ Z^’Dominates?

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Restricted dominance

One way to derive dominance is to focus on a restricted case:
dominance relative to equivalent extensions.

Let ẑ ⊕ e denote combining a partial solution ẑ with an
extension e.

When ẑ ⊕ e is a (feasible) complete solution, e is called the
(feasible) completion of ẑ .

A special case of dominance arises when all feasible completions of
a space are also feasible completions for another space, and the
first solution is always better than the second solution.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Definitions

Definition: Semi-Congruence

is a relation ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bz bz ′ ⇒ o(bz ′ ⊕ e)⇒ o(bz ⊕ e)

Then we need to say something about when one space is “better”
than another. We call this weak dominance. if ẑ weakly dominates
ẑ ′, then any feasible completion of ẑ is at least as beneficial as the
same feasible completion of ẑ ′

Definition: Weak Dominance

is a relation δ̂ ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bzbδbz ′ ⇒ o(bz ⊕ e) ∧ o(bz ′ ⊕ e)⇒ p(bz ⊕ e) ≥ p(bz ′ ⊕ e)

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Definitions

Definition: Semi-Congruence

is a relation ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bz bz ′ ⇒ o(bz ′ ⊕ e)⇒ o(bz ⊕ e)

Then we need to say something about when one space is “better”
than another. We call this weak dominance. if ẑ weakly dominates
ẑ ′, then any feasible completion of ẑ is at least as beneficial as the
same feasible completion of ẑ ′

Definition: Weak Dominance

is a relation δ̂ ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bzbδbz ′ ⇒ o(bz ⊕ e) ∧ o(bz ′ ⊕ e)⇒ p(bz ⊕ e) ≥ p(bz ′ ⊕ e)

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Definitions

Definition: Semi-Congruence

is a relation ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bz bz ′ ⇒ o(bz ′ ⊕ e)⇒ o(bz ⊕ e)

Then we need to say something about when one space is “better”
than another. We call this weak dominance. if ẑ weakly dominates
ẑ ′, then any feasible completion of ẑ is at least as beneficial as the
same feasible completion of ẑ ′

Definition: Weak Dominance

is a relation δ̂ ⊆ R2 such that

∀e,bz,bz ′ ∈ R : bzbδbz ′ ⇒ o(bz ⊕ e) ∧ o(bz ′ ⊕ e)⇒ p(bz ⊕ e) ≥ p(bz ′ ⊕ e)

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Dominance Relations (contd.)

To get a dominance test, combine the two

Theorem (Dominance)

∀ẑ , ẑ ′ ∈ R : ẑ δ̂ẑ ′ ∧ ẑ ẑ ′ ⇒ profit∗(ẑ) ≥ profit∗(ẑ ′)

ie., if ẑ is semi-congruent with ẑ ′ and ẑ weakly dominates ẑ ′ then
the cost of the best solution in ẑ at least as beneficial as the best
solution in ẑ ′

When profit∗(ẑ) ≥ profit∗(ẑ ′) we say ẑ dominates ẑ ′, written ẑ δ ẑ ′

How does this fit into CSOT? Following is a cheap way to get a
weak-dominance condition:

Theorem (Profit Distribution)

If profit distributes over ⊕ and profit(ẑ) ≥ profit(ẑ ′) then ẑ δ̂ẑ ′

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Dominance Relations (contd.)

To get a dominance test, combine the two

Theorem (Dominance)

∀ẑ , ẑ ′ ∈ R : ẑ δ̂ẑ ′ ∧ ẑ ẑ ′ ⇒ profit∗(ẑ) ≥ profit∗(ẑ ′)

ie., if ẑ is semi-congruent with ẑ ′ and ẑ weakly dominates ẑ ′ then
the cost of the best solution in ẑ at least as beneficial as the best
solution in ẑ ′

When profit∗(ẑ) ≥ profit∗(ẑ ′) we say ẑ dominates ẑ ′, written ẑ δ ẑ ′

How does this fit into CSOT? Following is a cheap way to get a
weak-dominance condition:

Theorem (Profit Distribution)

If profit distributes over ⊕ and profit(ẑ) ≥ profit(ẑ ′) then ẑ δ̂ẑ ′

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

..Back to MISS

First calculate the semi-congruence condition between ẑ and ẑ ′.
Working backwards from the conclusion of the definition of
semi-congruence:

o(bz ⊕ e)
= {unfold defn, let L = #bz, L′ = #bz ′}

dom(bz.m) + dom(e.m) = [1..(x .maxVar)]
∧ nonAdj(bz) ∧ nonAdj(e) ∧ (bzL ⇒ ¬e1)

⇐ {nonAdj(bz ′) ∧ nonAdj(e) ∧ (bz ′
L ⇒ ¬e1), from.o(bz ′ ⊕ e)}

dom(bz.m) + dom(e.m) = [1..(x .maxVar)]
∧ nonAdj(bz) ∧ ((bz ′

L ⇒ ¬e1)⇒ (bzL ⇒ ¬e1))
= {anti-monotonicity of (k ⇐)}

dom(bz.m) + dom(e.m) = [1..(x .maxVar)]
∧ nonAdj(bz) ∧ (¬bz ′

L ⇒ ¬bzL)
= {vars assigned consecutively &dom(bz ′.m) + dom(e.m) = [1..(x .maxVar)]}

L = L′ ∧ nonAdj(bz) ∧ (¬bz ′
L ⇒ ¬bzL)

= {simplification}
L = L′ ∧ nonAdj(bz) ∧ (bzL ⇒ bz ′

L)

The conclusion is:

if ẑ and ẑ ′have both assigned to the same set of
variables, and both have no consecutive variables
assigned true, and the last assigned variable in ẑ is true
only if the last assigned variable in ẑ ′ is true
then ẑ can be feasibly extended with the same extension
whenever ẑ ′ can.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Dominance Relation for MISS

Since profit is a distributive profit function, the definition for δ
follows immediately: ẑ ẑ ′ ∧ profit(ẑ) ≥ profit(ẑ ′)
This dominance test reduces the complexity of the MISS algorithm
from exponential to polynomial. This is good but we can do better.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

A Necessary Tightener for MISS

Apply a “Neighborhood” tactic to calculate a tightener for a space:
If a segment is selected, then the next segment must not be
selected.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

An upper bound

An upper bound on a partial solution is the value of the best
possible solution obtainable from that partial solution

Combine the profit of the partial solution with the best
possible profit obtainable from the remaining variables

upperBound(x , ẑ) = p(x , ẑ) +

#x .sqnce∑
i=#bz max(x .sqnce(i), 0)

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

What is the cumulative effect of all the operators?

For input x = [1 . . . 10]:
Operator Added # of Nodes in Search Tree

None 2047

+ dominates 486

+tighten 12

+upperBound 12

Dominance and Tightening are very significant in eliminating
large swathes of the search space

But the algorithm is still not linear time..

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Finite Differencing (Page & Koenig, 1982)

Incrementally update an expensive computation rather than
computing it each time in the loop.
Requires introducing accumulating arguments into the main search
loop.
Tedious, but not difficult.

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Final Algorithm

Theorem

Algorithm MISS runs in linear time

Following table shows the results of running on sequences of
randomly generated numbers of varying length

Input Length NC (s) Sasano (s)

1000 0.00 0.00

10,000 0.12 0.14

20,000 0.22 0.28

40,000 0.43 0.72

80,000 0.75 1.8

100,000 1.1 2.8

200,000 2.2 8.9

400,000 4.6 stack overflow

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Related Segment Sum Problems

Using the same approach, and with several small changes to
the derivation, we have synthesized efficient linear-time
algorithms for variations on the problem, specifically
Maximum Multi-Marking and Maximum Alternating Segment
Sum (see the paper for the details)

In all cases we outperform the code produced by Sasano et al.
using program transformation

Srinivas Nedunuri MEPLS Austin, Texas

institution-logo

Introduction
Background

Dominance Relations
The Other Search Control Operators

Summary & Conclusions

We have shown how the addition of dominance relations can
significantly improve the complexity of an algorithm

We have applied the ideas of program synthesis to some useful
and well-known problems

Program synthesis is an effective way of generating effective
and efficient code

The methodology we have applied can be used to generate
algorithms for a family of related programs, with sharing of
derivations. In contrast, program transfornation requjires a
completely new transformation for each variation

Srinivas Nedunuri MEPLS Austin, Texas

	Introduction
	Background
	Dominance Relations
	The Other Search Control Operators

