
FLOATING POINT

COMPUTER ARCHITECTURE AND
ORGANIZATION

2

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

3

University of Texas at Austin

Fractional binary numbers

 What is 1011.1012?

4

University of Texas at Austin

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

Representation
 Bits to right of “binary point” represent fractional powers

of 2
 Represents rational number:

• • •

5

University of Texas at Austin

Fractional Binary Numbers: Examples

 Value Representation
5 3/4 101.112

2 7/8 10.1112

1 7/16 1.01112

63/64 0.111112

 Observations
 Divide by 2 by shifting right
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0
 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
 Use notation 1.0 – ε

6

University of Texas at Austin

Representable Numbers

 Limitation
 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit
representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

7

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

8

University of Texas at Austin

IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point

arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware
 Numerical analysts predominated over hardware designers in

defining standard

9

University of Texas at Austin

Floating Point Representation
 Numerical Form:

(–1)s M 2E

 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range

[1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

s exp frac

10

University of Texas at Austin

Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

11

University of Texas at Austin

Normalized Values

 Condition: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as biased value: E = Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2
 xxx…x: bits of frac
 Minimum when 000…0 (M = 1.0)
 Maximum when 111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

12

University of Texas at Austin

Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012
frac= 110110110110100000000002

 Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000
s exp frac

13

University of Texas at Austin

Denormalized Values

 Condition: exp = 000…0
 Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value (why +0 and -0?)
 exp = 000…0, frac ≠ 000…0

 Numbers very close to 0.0
 Lose precision as get smaller
 Equispaced

 1.23 * 10-6 is normalized, 0.01*10-6 is denormalized
 All +/- of unequal norms have non-zero result (gradual underflow)

14

University of Texas at Austin

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value ∞ (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0

15

University of Texas at Austin

Visualization: Floating Point Encodings

+∞−∞

−0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

16

University of Texas at Austin

Today: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary

17

University of Texas at Austin

Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

18

University of Texas at Austin

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

19

University of Texas at Austin

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.
8 values

s exp frac

1 3-bits 2-bits

20

University of Texas at Austin

Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

21

University of Texas at Austin

Interesting Numbers

Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}

22

University of Texas at Austin

Special Properties of Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic
 Will be greater than any other values
 What should comparison yield?

 Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity

23

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

24

University of Texas at Austin

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x ×f y = Round(x × y)

 Basic idea
 First compute exact result
 Make it fit into desired precision
 Possibly overflow if exponent too large
 Possibly round to fit into frac

25

University of Texas at Austin

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−∞) $1 $1 $1 $2 –$2
 Round up (+∞) $2 $2 $2 $3 –$1
 Nearest Even (default)$1 $2 $2 $2 –$2

 What are the advantages of the modes?

26

University of Texas at Austin

Closer Look at Round-To-Even
 Default Rounding Mode
 Hard to get any other kind without dropping into assembly
 All others are statistically biased
 Sum of set of positive numbers will consistently be over- or under-

estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values
 Round so that least significant digit is even

 E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

27

University of Texas at Austin

Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0
 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

28

University of Texas at Austin

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands

30

University of Texas at Austin

Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?
 But may generate infinity or NaN

 Commutative?
 Associative?
 Overflow and inexactness of rounding

 0 is additive identity?
 Every element has additive inverse
 Except for infinities & NaNs

 Monotonicity
 a ≥ b ⇒ a+c ≥ b+c?
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

31

University of Texas at Austin

Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?
 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?
 Multiplication distributes over addition?
 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost

32

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

33

University of Texas at Austin

Floating Point in C

 C Guarantees Two Levels
float single precision
double double precision

 Conversions/Casting
Casting between int, float, and double changes bit representation
 double/float→ int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int→ double
 Exact conversion, as long as int has ≤ 53 bit word size

 int→ float
 Will round according to rounding mode

34

University of Texas at Austin
Carnegie Mellon

Floating Point Puzzles

 For each of the following C expressions, either:
 Argue that it is true for all argument values
 Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN

35

University of Texas at Austin

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

36

University of Texas at Austin

Summary

 IEEE Floating Point has clear mathematical
properties

 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical

applications programmers

	Floating Point��Computer architecture and ORganization
	Today: Floating Point
	Fractional binary numbers
	Fractional Binary Numbers
	Fractional Binary Numbers: Examples
	Representable Numbers
	Today: Floating Point
	IEEE Floating Point
	Floating Point Representation
	Precisions
	Normalized Values
	Normalized Encoding Example
	Denormalized Values
	Special Values
	Visualization: Floating Point Encodings
	Today: Floating Point
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Distribution of Values
	Distribution of Values (close-up view)
	Interesting Numbers
	Special Properties of Encoding
	Today: Floating Point
	Floating Point Operations: Basic Idea
	Rounding
	Closer Look at Round-To-Even
	Rounding Binary Numbers
	FP Multiplication
	Mathematical Properties of FP Add
	Mathematical Properties of FP Mult
	Today: Floating Point
	Floating Point in C
	Floating Point Puzzles
	Today: Floating Point
	Summary

