
Using Software-Extended Ar
hite
tures

for

Software Simultaneous Multithreading

Emmett Wit
hel and M. Frans Kaashoek

MIT Laboratory for Computer S
ien
e

545 Te
hnology Square

Cambridge MA 02174

Email: fwit
hel, kaashoekg�l
s.mit.edu

Janurary 27, 1997

Abstra
t

A software-extended ar
hite
ture (SEA) enhan
es a hardware ar
hite
ture by pla
ing a high-perform-

an
e dynami
 instru
tion-set translator between the appli
ation binary and the pro
essor, improv-

ing pro
essor utilization and enabling new fun
tionality with no
hanges to either the pro
essor

or the binaries. Our prototype implementation of a software-extended Alpha 21164
an provide

new system fun
tionality while adding only 1%{30% to the running time of an appli
ation. Using

this prototype, we have implemented software simultaneous multithreading (SSMT), a new soft-

ware te
hnique for allowing programs to make greater use of the pro
essor pipeline. SSMT merges

instru
tion streams from independent pro
esses, in order to in
rease instru
tion-level parallelism.

Experiments with SSMT on the software-extended Alpha 21164 show that pro
essor throughput

an be improved by up to 30% on real programs, despite the small number of issue slots on this

pro
essor.

1 Introdu
tion

While innovations in
omputer ar
hite
ture like multiple issue slots, dynami
 s
heduling, and large

register sets are be
oming
ommonpla
e, limitations in
ompiler te
hnology and inherent data-
ow

requirements prevent these
apabilities from being fullly used. Furthermore, su

essive implemen-

tations of the same ar
hite
ture often have di�erent performan
e
hara
teristi
s, penalizing lega
y

binaries. In addition, some users would like to add new
apabilities to their ar
hite
ture, e.g.

system
all redire
tion, without having to modify their hardware.

Software-extended ar
hite
tures (SEA) are a novel approa
h that addresses these issues. A

software-extended ar
hite
ture interposes a dynami
 instru
tion-set translator between the appli-

ation binary and the pro
essor. At runtime, appli
ation
ode is read by the translator, and new

fun
tionality is added; the result is immediately exe
uted. The translator does not require mod-

i�
ations to the exe
utable, so existing binaries
an be augmented with new
apabilities. System

1

MIT-LCS-TR-878. 2

all redire
tion [Jon93℄, sandboxing [WLAG93℄, preemptive user-level thread s
heduling, and using

on�gurable pro
essing hardware [RS94℄ are natural appli
ations for software-extended ar
hite
-

tures. Software-extended ar
hite
tures
an also dynami
ally perform
hip-spe
i�
 optimizations,

su
h as instru
tion s
heduling, and data-dependant optimizations based on feedba
k information.

The key advantage of software-extended ar
hite
tures is that users bene�t without
hanging the

pro
essor or the appli
ation binary.

The translator for the SEA prototype des
ribed in this paper is based on re
ent advan
es in

dynami
 binary translation for fast ma
hine simulation [CK94, WR96℄ . The primary
ontributions

of our translator implementation are removing binary translation from the ma
hine simulation

ontext and adding additional optimizations (su
h as
ode s
heduling and dynami
 inlining) that

keep translator overheads low and emitted
ode quality high. The result is a dynami
 translator that

an extend the
apabilities of existing ar
hite
tures and improve performan
e for real appli
ations.

To illustrate the value of software-extended ar
hite
tures we added support for software simul-

taneous multithreading (SSMT) to the Alpha 21164. With the pipelines of supers
alar pro
essors

be
oming deeper and wider, te
hniques for improving pipeline utilization are be
oming more impor-

tant. Like simultaneous multithreading (SMT) [TEL95℄, SSMT in
reases appli
ation throughput

by in
reasing pipeline utilization. Unlike SMT, SSMT gains this performan
e without radi
ally

hanging the underlying ma
hine ar
hite
ture. The SSMT runtime system dynami
ally merges

instru
tion streams from di�erent pro
esses, thereby in
reasing instru
tion-level parallelism and

making that parallelism easier to exploit. By proper
ode s
heduling, the laten
y of one pro
ess's

register dependen
ies
an overlap either instru
tion exe
ution or register dependen
e laten
y of

another pro
ess. SSMT in
reases system throughput at the
ost of some per-pro
ess laten
y.

The work in this paper does not address the interfa
e to the SSMT system. Nevertheless, one

of the more intriguing possibilities would be for the operating system s
heduler to
hoose one or

more kernel threads from the run queue for merging. Thus, the only program whose text is dire
tly

exe
uted on the pro
essor is the operating system itself. This option has profound ar
hite
tural

impli
ations as it frees pro
essor ar
hite
ts to make drasti

hanges for every
hip revision|the

runtime system will ensure binary
ompatibility for user programs. In addition, the runtime system

an greatly simplify pro
essor design by performing any ne
essary register renaming, dependen
y

he
king, and
ode s
heduling.

There are a variety of stati
 translation tools (see Se
tion 2) whi
h share some of the goals

of SEA. While some SEA fun
tionality
ould be implemented stati
ally, other appli
ations, su
h

as SSMT, require dynami
 translation. If SSMT were implemented using stati
 translation, ea
h

possible exe
ution path of one program must be merged with every possible path of the other

program; furthermore, this pro
ess must be repeated for all appli
ation pairs whi
h might run in

tandem. The storage overhead of su
h a s
heme makes it unrealisti
. Run-time translation enables

data-dependent optimization, su
h as those exploited by dynami

ode generation systems [Eng96℄,

as well as SMT. It is possible that stati
 translation is sometimes more appropriate, but both

te
hniques are valuable, and they
an often be used in
onjun
tion.

The key
ontributions of this paper are the design and implementation of SEA and SSMT.

We show that for our prototype implementations on the Alpha 21164, an SEA
an provide servi
es

while adding only 1%{30% to program exe
ution time of some ben
hmarks, and SSMT
an in
rease

pro
essor throughput by as mu
h as 30% for some appli
ation pairs. While performan
e gains are

possible, the 21164 is not a target ar
hite
ture for SSMT. The performan
e of our prototypes are

limited by the narrow issue width of the 21164. Our measurements indi
ate that for pro
essors

whi
h have more registers and/or wider pipelines, SSMT should perform substantially better. In

the long term, software-extended ar
hite
tures (and SSMT)
ould allow a VLIW-like pro
essor to

MIT-LCS-TR-878. 3

run standard RISC binaries, or allow supers
alar ar
hite
ts to simplify their design and
on
entrate

on in
reasing
lo
k rate and adding more fun
tional units.

The rest of this paper is organized as follows. Se
tion 2 presents related work in software-

extended ar
hite
tures, simultaneous multithreading and binary translation systems. Se
tion 3

presents the
ontrol
ow and main data stru
tures of the dynami
 binary translator and the new

optimizations it implements. It also presents our experimental environment and a quantitative

analysis of the
ost of a software-extended Alpha 21164. Se
tion 4 dis
usses how a software-

extended ar
hite
ture
an be used to implement SSMT. It explains our merging algorithms and

evaluation methodology, and provides a quantative analysis the gains attainable from SSMT on

the 21164. Se
tion 5 dis
usses some of the ar
hite
tural features that would bene�t the translation

system and dis
usses the impli
ations of SEA.

2 Related work

In this se
tion we dis
uss re
ent related work in hardware simultaneous multithreading and software

binary translation. The hardware multithreading proje
t that SSMT most
losely resembles is

simultaneous multithreading (SMT) [TEL95, TEE

+

96℄. A SMT pro
essor dynami
ally partitions

hip resour
es for multiple hardware threads, gaining an advantage over the stati
 partitioning done

by multipro
essors. Multiple hardware threads, in
rease the instru
tion level parallelism available

to the pro
essor.

The goals and bene�ts of SSMT are similar to SMT, but SSMT supports multithreading in

software. The advantages of a software approa
h is that it is able to dire
tly leverage
urrent

trends in pro
essor design. Instead of
ommitting to a radi
ally di�erent
hip design, pro
essor

ar
hite
ts designing for SSMT
an extrapolate te
hniques that are
urrently bearing fruit.

A disadvantage of using a SMT pro
essor is that it exposes multithreading to the operating

system, ne
essitating a kernel with lo
ks and syn
hronization overhead. While multipro
essor

operating systems have su
h
apabilities, they are generally inferior in performan
e to unipro
essor

operating systems [RBH

+

95℄. SSMT does not require a multipro
essor operating system.

Another ar
hite
tural drawba
k of the SMT design is its need for a large,
oherent register �le

(8*32+100 renaming registers in the simulated ar
hite
ture). While SMT uses two pro
essor
y
les

to a

ess this large register �le [TEE

+

96℄, this design
ould limit the
lo
k rate of the
hip. SSMT

does not need a single large register �le be
ause register renaming is done in software.

An advantage of the SMT approa
h that it is likely to s
ale to a larger number of threads than

SSMT, as the exponential growth of possibilities for
onditional bran
h resolution qui
kly be
omes

intra
table with SSMT, even with ar
hite
tural support.

Software-extended ar
hite
tures are inspired by ideas and implementation te
hniques used in

binary rewriting tools. Earl Killian's Pixie [Smi91℄, ATOM [SE94℄, EEL [LS95℄ and similar tools

allow users to analyze and instrument whole program binary images. Image modi�
ation allows

extensive analysis and optimization, sin
e the work is done o�-line and
an be amortized over many

exe
utions.

Some systems [SCK

+

93℄ use a hybrid approa
h in whi
h most work is done stati
ally, but run-

time support is provided for diÆ
ult
ases like self-modifying
ode. Just in time
ompilers [Gos95℄

and virtual exe
ution environments [ATLLW96℄ perform stati
 translation (in
luding
hip-spe
i�

optimizations), but the user must wait for the translation to be
omplete before exe
ution starts.

Dynami
 translators su
h as Shade [CK94℄ and Embra [WR96℄ translate binaries in
rementally

at run-time. The run-time system for software extended ar
hite
tures borrows implementation

te
hniques from these fully dynami
 systems.

MIT-LCS-TR-878. 4

Has code at PC
been translated?

Compute new PC

Execute translation Translate code at PC

Write code into
translation cache

yes no

Reads a basic block
Writes translation into TC

Code fragments which end
with jump dispatch_loop

Call and
return

Translation Cache (TC)

Translator

writes code

Control flow

dispatch_loop:
PC = LookupPC(RA);

 jump pc2tc(PC);
else
 tc = Translate(PC);
 pc2tc(PC) = tc;
 jump tc;

if(IsTranslated(PC))

Dispatcher

(a) Control
ow (b) Software ar
hite
ture

Figure 1: Control
ow and software ar
hite
ture for the dynami
 program translator. If the
ode

at the
urrent program
ounter is translated, then we exe
ute a
a
hed
opy of the translation.

Otherwise, we translate the
ode, write it into the translation
a
he, and then exe
ute it.

Some re
ent
on
urrent e�orts are using translation te
hnology, binary rewriting tools, and

runtime-feedba
k to improve performan
e of binary appli
ations. A re
ent produ
t, FX!32 [Dig℄,

translates
odes from the x86 to the Alpha, and uses runtime feedba
k to improve the quality of

the translated
ode. Our SEA implementation also uses runtime feedba
k, and it
ould pro�t from

the runtime statisti
s databases maintained by FX!32. Morph is a new proje
t that plans to use

pro�le-based information to re-optimize exe
utables [CSB96℄. SEA shares some performan
e goals

with these stati
 translation s
hemes. We feel that dynami
 translation has some advantages in

allowing binaries to be optimized for spe
i�

lasses of inputs, and by enabling data-dependent

optimizations. But we also believe that our approa
h is
ompatible with stati
 tools. For example,

one might use FX!32 to stati
ally translate from the x86 instru
tion set to the Alpha instru
tion

set and then run the resulting binary on a SEA.

Finally, we note that sofware-extended ar
hite
tures represents an appli
ation of RISC [Pat85℄

philosophy. While RISC pushed hardware
omplexity into software, an SEA allows new hardware

fun
tionality to be implemented in software.

3 Software-extended ar
hite
tures

The key
omponent of a software-extended ar
hite
ture is the dynami
 instru
tion translator. In

this se
tion, we des
ribe the basi
 design of the translator and some of the optimizations that it

employs to make software-extended ar
hite
tures pra
ti
al. We also dis
uss the proper division

of labor between a
ompiler and a SEA, and evaluate the performan
e of our SEA prototype

implementation.

3.1 The dynami
 translator

The
ontrol
ow of the the dynami
 program translator is
on
eptually similar to fast ma
hine

simulators su
h as Shade [CK94℄ and Embra [WR96℄ (depi
ted in Fig. 1a). The translator reads a

program binary �nds its entry point, and begins translation. The fet
h unit of the translator reads

ode from the appli
ation text segment, performs various fun
tions on the
ode like register renam-

ing, dependen
y
he
king, and pipeline s
heduling, and then writes the result to the translation

a
he, an area of memory whi
h holds translations. The work done by the translator is amortized

MIT-LCS-TR-878. 5

be
ause a
a
hed translations are exe
uted repeatedly. This translation pro
ess is analogous to the

prede
ode phase of some modern pro
essors, where
ode is read from memory, and then written in

a slightly modi�ed form to the instru
tion
a
he.

Figure 1b illustrates the software ar
hite
ture of these dynami
 translation systems. The main

dispat
h loop determines whether the translator needs to be invoked. It does this by using the

urrent program
ounter as an index into the p
2t
 hash table, whi
h returns the lo
ation of the

translated
ode for this program
ounter, if a translation exists. If the translation does not exist,

the translator is
alled, it writes the translation into the translation
a
he, and the lo
ation of the

translation is re
orded in the p
2t
 hash table.

3.1.1 Performan
e of the dynami
 translator

The performan
e overhead of the SEA runtime (i.e., the translator and the dispat
h loop) is due

to two sour
es, (1) extra instru
tions in the
ode translations and (2) support routines like the

translator and the dispat
her. The SEA runtime adopts the litany of optimizations implemented in

Shade and Embra. These optimizations greatly redu
e the amount of time spend in the translator

and dispat
her so that almost all exe
ution time is spent exe
uting translations. Sin
e a SEA trans-

lator must be more
on
erned with the quality of its generated
ode than either Shade or Embra,

it
ontains new optimizations to address the overhead of extra instru
tions. These optimizations

are dis
ussed below in Se
tion 3.2.

The SEA runtime also adds ar
hite
tural overheads to program exe
ution time in the form of

in
reased
a
he and TLB miss rates, but the measured impa
t of these overheads is small (see

Se
tion 3.4).

3.2 Optimizations performed by the SEA runtime

The SEA runtime adds instru
tions to the workload to perform fun
tions like tra
king the
urrent

PC. The performan
e impa
t of these instru
tions
an be redu
ed by (1) minimizing the number of

added instru
tions, and mitigated by (2) s
heduling the instru
tions intelligently and (3) spreading

the
ost of the bookkeeping over larger translation units. In Se
tion 3.2.1, we enumerate the tasks

performed by the SEA runtime in its translations, and how it
an perform those fun
tions eÆ
iently.

We also talk about how the SEA runtime
an try to hide these
osts.

Adjusting the fet
h poli
y of the translator has potential advantages and disadvantages that are

algorithmi
 and ar
hite
tural. An algorithmi
 advantage of following bran
hes is that the translator

an fet
h larger translation units, whi
h
an be better s
heduled, and whi
h
an redu
e the amount

of ne
essary bookkeeping.

Some form of bran
h predi
tion is ne
essary to fet
h through
onditional bran
hes (whi
h are

mu
h more prevelant than un
onditional bran
hes). Information to in
rease predi
tion a

ura
y

an be
olle
ted at run-time, or read from feedba
k information.

Be
ause bran
h predi
tion is never perfe
t, the algorithmi
 disadvantage of an aggressive fet
h

poli
y is that the translator is doing useless work by fet
hing down a path whi
h is not exe
uted.

Additionally, translations that waste spa
e in the translation
a
he
an
ause the
a
he to �ll (whi
h

is expensive to deal with) more qui
kly.

Ar
hite
turally, fet
hing through bran
hes has the potential to in
rease the
a
he and TLB

lo
ality of translations be
ause if the bran
h predi
tion is a

urate,
ode for a long path of instru
-

tions may reside in a single translation unit. However, if only small parts of ea
h large translation

unit are exe
uted (due to poor bran
h predi
tion),
ontrol might be transfered all around the

translation
a
he, redu
ing
a
he and TLB lo
ality.

MIT-LCS-TR-878. 6

Sin
e many basi
 blo
ks might transfer
ontrol to a single blo
k, following bran
hes
an also

lead to
ode repli
ation. Code repli
ation
an e�e
tively trade in
reased spa
e for redu
ed time,

but it
an also put pressure on the underlying memory hierar
hy.

The fet
h poli
y of the translator is a key parameter of the translator, and is analogous to the

hardware bran
h-spe
ulation poli
y of modern pro
essors. Be
ause the translator is implemented

in software, its poli
ies
an be aggressively tailored for a given appli
ation. While the literature

on hardware bran
h-predi
tion is large [YP92, MEP96, GYCS96℄, we believe that SEA
ould open

up a new trade-o� spa
e for bran
h predi
tion algorithms based on information
olle
ted by SEA

software. These new bran
h predi
tion s
hemes
ould either repla
e hardware predi
tion, or work

with hardware predi
tion s
hemes.

Like other SEA fun
tions, software
olle
tion of bran
h information adds instru
tions to
ode

translations. While algorithmi
 innovations for instru
tion s
heduling
an help address this
ost,

the key te
hnologi
al trend that SEAs anti
ipate is wider issue widths. Current pipelines are too

narrow to hide the overhead instru
tions of an SEA (as measured in Se
tion 3.4), but we expe
t

that te
hnologi
al trends will address this problem.

3.2.1 SEA runtime bookkeeping

The SEA runtime adds instru
tions to its translations to tra
k the
urrent program PC, implement

register indire
t jumps and, support register reallo
ation.

The SEA runtime needs registers for its bookkeeping tasks. In order to minimize the need

for hardware support, the runtime does not require dedi
ated registers, rather it spills program

registers when needed. The runtime uses a stati
 tool (i.e. the program is not exe
uted) to analyze

a binary image and produ
e a �le detailing the binary's register usage. The runtime reads this �le,

and when possible, it uses \dead" registers (a register whose next appearan
e in program exe
ution

is as a destination), be
ause the
ontents of these registers does not need to be saved and restored.

PC tra
king. In order to
ontinue program exe
ution, the dispat
her needs to know the

urrent program
ounter. Shade and Embra tra
ked the program
ounter value using a ma
hine

register. The SEA runtime aggressively minimizes its use of hardware resour
es, and so does not

use a register. Instead, the return address of the bran
h used to exit the translation
a
he is used

as an index into a table (this is depi
ted in the LookupPC step in Fig. 1b) whi
h
ontains the

new program PC. When
ode is translated, the addresses of its exit points are asso
iated with the

program
ounter at those points so the lookup always su

eeds.

In the
ommon
ase of exiting a blo
k that ends with a
onditional bran
h, the bran
h
ondition

must be evaluated. Evaluating the
ondition, spilling a known register, and bran
hing out of the

translation
a
he are the instru
tion overheads for maintaining the program PC in this
ase.

If the translator
an e�e
tively fet
h through bran
hes, the PC tra
king
ode
an be redu
ed

to a single
he
k for
onditional bran
hes that the bran
h was predi
ted
orre
tly.

Register-indire
t jumps. When
ontrol is transfered to a register value, there is no way

to know the destination stati
ally. Embra had a spe
ial strategy for dealing with register-indire
t

jumps
alled spe
ulative
haining. Ea
h register-indire
t jump transfers
ontrol to the prelude of

the translation of the expe
ted jump destination, whi
h
he
ks to see that the program
ounter

was
orre
t. This was a substantial win on the MIPS ar
hite
ture sin
e the MIPS
ompilers use

register indire
t jumps for pro
edure
alls.

Pro
edure
alls on the Alpha are generally implemented as a spe
ial type of un
onditional

bran
h, so most register indire
t jumps in Alpha
ode are pro
edure returns. Be
ause fun
tions are

usually
alled from diverse program sites [Wal86℄, pro
edure returns are far less predi
table than

MIT-LCS-TR-878. 7

pro
edure
alls, and spe
ulative
haining is no longer a performan
e win.

We dis
uss the details of how register indire
t jumps are handled in Se
tion 3.4, but they are

expensive (�15 instru
tions for base SEA and 26 for SSMT). Sin
e the return point of a fun
tion is

known at its
all site, if a fet
h poli
y
an fet
h through a fun
tion
all to its return, it
an simply

ontinue fet
hing after the
all site. This
ompletely eliminates the indire
t jump of the pro
edure

return.

Register reallo
ation. Register reallo
ation is only an issue for SSMT. It is dis
ussed in

Se
tion 4.6.1.

Hiding SEA overhead. On
e the number of instru
tions required for an SEA task is min-

imized, the performan
e overhead
an be minimized by instru
tion s
heduling and by amortizing

the
ost over larger translation units.

Fet
hing through
onditional bran
hes allows large in
reases in translation unit sizes whi
h

provides an opportunity for the SEA
ode s
heduler to revisit some
ompiler de
isions regarding

ode s
heduling, register allo
ation, and loop unrolling. There is an opportunity for
ooperation

between the
ompiler and the SEA runtime, allowing the
ompiler to fo
us on sour
e-to-sour
e and

ma
hine spe
i�
 optimizations, while the SEA uses ar
hite
ture implementation spe
i�
 information

for further optimization.

3.3 Drawing the line between the
ompiler and an SEA

The SEA runtime performs some of the same fun
tions as a
ompiler, so it is important to
onsider

whi
h tool is more appropriate for whi
h fun
tion.

The SEA
ode s
heduling algorithm is simple, but
hip-spe
i�
. Therefore, we would expe
t it

to perform better than the generi
 s
hedule one would obtain from, for example, g

, but worse

than what one
ould obtain from the most sophisti
ated algorithms used in the DEC
ompiler's

hip-spe
i�
 s
heduler.

However, it is not
lear that the
ompiler is the appropriate tool for
hip spe
i�
 optimizations.

Given that a single binary is often exe
uted on multiple revisions of a
hip ar
hite
ture, we believe

that
hip-spe
i�

ode s
heduling is more appropriately done by a software extensible ar
hite
ture

than by a
ompiler, or a binary rewriting tool. However, even if a system used a stati
 tool for

hip-spe
i�
 s
heduling, and users weren't burdened with �guring out whi
h binary to run on

whi
h platform, SEA
an integrate data-dependent optimizations with its
ode s
heduling. Instead

of having a
ompiler or binary rewriting tool transform a program for its behavior on one of its

inputs, a program running under a software extended ar
hite
ture
an provide a data �le
ontaining

pro�le information for ea
h
lass of inputs.

The SEA runtime is
apable of doing aggressive inlining and loop unrolling. The
ompiler and

an SEA seem dire
tly
ompatible in this
ase. In order to support multiple
ompilation units, it is

diÆ
ult for
ompilers to support inlining of library
alls. While su
h inlining
ould be done by the

linker [Wal86℄, the question of what to inline is diÆ
ult to answer in a ma
hine-independent way.

The SEA runtime is an extension of the ar
hite
ture, so it is an appropriate level at whi
h to make

these de
isions.

Finally, several studies have shown bene�ts to s
heduling
ode a
ross multiple basi
 blo
ks

(e.g. tra
e s
heduling [Fis93, Wal91℄). This is a data-dependent
ode transformation[Fis81℄ and

so seems appropriate for an SEA, where pro�le information
an be provided at runtime, and the

transformations
an be aggressive without worrying about penalizing
ases where the program

behavior might be di�erent.

To make a
onvin
ing
ase, and to separate out runtime feedba
k, we evaluate the performan
e

MIT-LCS-TR-878. 8

Ben
hmark IPC SEA Runtime

Native SEA time

mandel 0.49 0.60 0.32%

swim 0.59 0.56 1.04%

alvinn 0.46 0.49 0.35%

hydro2d 0.49 0.47 1.12%

turb3d 1.05 0.97 1.61%

applu 0.70 0.63 2.08%

ijpeg 1.17 1.07 0.98%

mgrid 1.69 1.40 4.85%

ompress 0.77 0.75 0.50%

Table 1: IPC and SEA runtime system overhead for several ben
hmarks. Overhead due to SEA

support routines is low, but SEA adds extra instru
tions to the workload. How these instru
tions

are s
heduled in
uen
es the IPC.

of our SEA by
ompiling our ben
hmarks with
hip-spe
i�
 optimization, and neither the
ompiler

nor the SEA runtime use pro�le information.

3.4 The measured performan
e of SEA

In order to understand the performan
e impli
ations of a software-extended ar
hite
ture, we present

performan
e results and measurements of a software-extended Alpha 21164. These experiments

measure the base performan
e of the SEA system. Some types of fun
tionality (e.g. system
all

monitoring)
ould be performed at this performan
e level.

Our experiments were run on a 266MHz Alphastation 500/266 running Digital Unix 4.0. This

ma
hine has 8KB dire
t-mapped primary instru
tion and data
a
hes with a 2
y
le a

ess time,

a 96KB 3-way se
ondary
a
he with an 8
y
le a

ess time[ER℄, and a 2 MB third level, o�-
hip

a
he with a 15.5
y
le a

ess time as measured by lmben
h [MS96℄. Ea
h ma
hine has 128 MB

of memory and was in multiuser mode during the measurements. In fa
t, the ma
hines were often

in use during the measurements. To mitigate the e�e
ts of other pro
esses, we
ompare the user

portion of exe
ution time. The user time measures all of the overheads of our system, ex
ept for

additional system time indu
ed. The in
reased system time due to in
reased TB misses (due to

SEA support data stru
tures) is not in
luded. However, this in
rease is small relative to the running

time of the ben
hmarks, and if SEA is implemented as part of the operating system, spe
ial support

(e.g., superpages)
ould be used to eliminate it. Ca
he miss
ounts and pipeline information are

measured using the 21164 on-
hip
ounters.

To evaluate SEA we used several ben
hmarks from SPEC95 [SPE95℄, both
oating point (swim,

hydro2d, turb3d, and applu) and integer (ijpeg and
ompress) ben
hmarks. In all
ases the input

data sets have been redu
ed from the SPEC distribution to redu
e running time. In addition

we measure alvinn, a
oating point program from SPEC92, whi
h we have modi�ed to read its

input data from its data segment rather than a �le. This redu
es time it takes alvinn to rea
h

a
omputational steady state, whi
h is the behavior of interest. Mandel is a small program that

generates a
olor bitmap of the Mandelbrot set and writes the result to a �le [Gil℄.

The results
an be seen in Figure 2. All ben
hmarks were
ompiled with DEC's C or Fortran

MIT-LCS-TR-878. 9

N SEA
mandel

N SEA
swim

N SEA
alvinn

N SEA
hydro2d

N SEA
turb3d

N SEA
applu

N SEA
ijpeg

N SEA
mgrid

N SEA
compress

Benchmark pairs

0

10

20

30

E
xe

cu
ti

on
 T

im
e

(s
)

31.0

31.3
1.2%

24.2

24.6
1.4%

30.1

31.2
3.6%

28.8

32.1
11.7%

16.5

18.7
13.4%

15.8

18.3
15.9%

27.6

32.1
16.4%

4.4

5.2
18.7%

21.7

28.4
31.2%

Pipe stall
Dcache stall
Icache stall
Scache stall
Instructions

Figure 2: Exe
ution time for several ben
hmarks (
ompilied at the highest optimization level),

running native (N) and running under SEA (SEA) are presented. Aggregate time for ea
h pair

is broken down among stall for pipeline dependen
ies, primary data (D)
a
he re�ll, primary in-

stru
tion (I)
a
he re�ll, and uni�ed on-
hip se
ondary (S)
a
he re�ll, and instru
tion exe
ution.

The exa
t running time of ea
h ben
hmark pair is given above the bar, and the
hange from native

exe
ution to SEA exe
ution is given with the SEA value.

ompiler at the highest level of inter-pro
edural optimization and
hip-spe
i�

ode s
heduling

ags. Having the
ompiler s
hedule the
ode for the 21164 makes the overheads of the SEA

runtime system more apparent be
ause the
ompiler's
hip-spe
i�
 s
heduling is superior to the

hip spe
i�
 s
hedule done by the translator. In order to more fully expose the overhead of the

SEA runtime system, no feedba
k information was provided, and
onditional bran
h spe
ulation

was turned o�. Be
ause SEA
an optimize data-dependent bran
hes and loop limits, we expe
t

that its performan
e using feedba
k information would be better relative to a
ompiler that had

a

ess to the same information.

Several things are interesting about the data in Figure 2. The �rst is that the overhead of our

SEA implementation is surprisingly low|only 1{3% for three of the nine appli
ations. While our

ben
hmarks to not stress the memory system, our SEA implementation adds little overhead (less

than 10%) to memory system
osts. SEA also demonstrates little interferen
e with the memory

mapping hardware of the ma
hine. SEA's memory and mapping requirements s
ale (moderately)

with appli
ation size, not with appli
ation data sets, so we
on
lude that the ar
hite
tural
ost of

an SEA is a

eptably low.

Overhead due to SEA support fun
tions (e.g., translator and dispat
her) is shown in Table 1. It

too is surprisingly low, indi
ating that the optimizations developed for Shade and Embra translate

well to SEAs.

In all
ases, the in
reased running time on the SEA is due to in
reased instru
tions. Integer

programs like ijpeg and
ompress have more pro
edure returns than the
oating point programs, and

so su�er from larger instru
tion overheads. The
omparison of IPC for native and SEA exe
ution

MIT-LCS-TR-878. 10

in Table 1 indi
ates that the SEA runtime is not �nding unused issue slots to hide its overhead

instru
tions. The SEA bookkeeping
ode a
tually redu
es the IPC of most of the ben
hmarks.

While the SEA runtime in
reases the IPC of mandel, Figure 2 shows a de�nite in
rease in the

amount of time spend exe
uting instru
tions. This implies that the SEA bookkeeping
ode for

mandel is eÆ
iently s
heduled, but the SEA
annot �nd room in the
ompiler output to s
hedule

its overhead instru
tions.

Currently, the SEA runtime handles register indire
t jumps (e.g., those present at pro
edure

returns) by using the register that holds the new PC value to index into a hint table. The hint

table asso
iates program PC values with the translation
a
he address for that
ode's translation,

if one exists. Be
ause the table is just a hint, the PC value must be
he
ked against the PC value

stored in the table. Along with the table indexing overhead, this amounts to approximately 15

instru
tions. We are investigating ways, e.g., by using a return sta
k, to lower this
ost.

It is not surprising that instru
tion overheads dominate in this experiment be
ause the
ompiler

s
hedules its
ode well, and sin
e our SEA is not spe
ulating through basi
 blo
ks, its s
heduling

opportunities are limited, and bookkeeping
osts are not amortized over large translation units.

4 Software Simultaneous Multithreading

Modern pro
essors feature multiple fun
tional units that work in parallel. Although most of these

units are fully pipelined, they often sit idle due to register dependen
ies, i.e. one instru
tion

produ
es a register value needed by a downstream instru
tion. It may be that the fun
tional unit

for the downstream instru
tion is available, but the instru
tion
annot exe
ute until the upstream

instru
tion
ompletes.

On stati
ally s
heduled pro
essors (like the Alpha 21164 and the MIPS R8000), register de-

penden
ies
ause the pro
essor to stall in the issue stage. The problem of a stalled pipeline is

exa
erbated on these pro
essors by their multiple issue
apability. The Alpha 21164
an issue

two integer instru
tions per
y
le, so ea
h stall
y
le (possibly) prevents two instru
tions from

exe
uting.

On dynami
ally s
heduled pro
essors (like the MIPS R10000, and the UltraSPARC), register

dependen
ies lengthen the fun
tional unit queue length. On these pro
essors, it might be possible

to �nd a non-dependent instru
tion further downstream with no register dependen
ies, and use

the fun
tional unit to exe
ute that instru
tion while the dependent instru
tion sits on a queue.

However, queued instru
tions use valuable
hip resour
es (like physi
al registers). Also, the limited

lookahead of these pro
essors,
oupled with the ne
essity of bran
h predi
tion, makes �nding useful,

non-dependent instru
tions diÆ
ult.

SSMT addresses this problem of pipeline underutilization by dynami
ally merging instru
tion

streams from di�erent pro
esses. We have implemented SSMT by modifying the dynami
 translator

of our software-extended Alpha 21164. We dis
uss the redu
ed lo
ality of merged programs, the

new
ode s
heduling tasks needed for e�e
tive program merging, the problems of register allo
ation

and naming, the operating system tasks performed by the SSMT runtime, and �nally we dis
uss

the implementation and measure the performan
e of our prototype.

4.1 Redu
ed lo
ality of merged programs

In order to merge two pro
esses, the SEA translator needs to keep tra
k of PC pairs instead of a

single PC. Code for PC pairs is read, s
heduled, emitted and exe
uted as a unit. This
hange is

signi�
ant be
ause the lo
ality of PC pairs is lower than that of individual PCs. Redu
ed lo
ality

MIT-LCS-TR-878. 11

1 a

2 a

3 a

SSM
Runtime

a1

2

3

1

2 SSM
Runtime

1 a

2 b

3 a

1 b

3

a

b

1

2

3

(a) Loop smearing (b) Loop meshing

Figure 3: Merging basi
 blo
ks from di�erent pro
esses. One pro
ess has blo
ks 1,2,3, the other

has blo
ks a and b. Loop smear spreads iterations of a loop a
ross multiple translation units, while

loop meshing
auses the entire
ross-produ
t of basi
 blo
ks to be merged.

in
reases the amount of bookkeeping instru
tions that get exe
uted, and in
reases the amount of

ode generated by the translator. Redu
ed lo
ality has two forms|loop smearing and loop meshing.

Loop smearing (Fig. 3a) o

urs when one pro
ess is exe
uting a loop while the other pro
ess

exe
utes straight line
ode. Sin
e the merged
ontents of ea
h loop iteration is di�erent, ea
h loop

iteration gets smeared out a
ross the translation
a
he.

Loop meshing (Fig. 3b) o

urs when two pro
esses are ea
h in a loop. When the number of basi

blo
ks in ea
h loop are relatively prime, then if there are enough loop iterations, all
ombinations of

the basi
 blo
ks will be emitted. Even if the numbers are not relatively prime, a large fra
tion of the

ross-produ
t may be emitted into the translation
a
he. The e�e
t is analogous to inter-meshing

gears.

A less fundamental, but still annoying,
onsequen
e of merging programs is that the overhead of

register indire
t jumps in
reases when PC pairs are used to index the hint table. More instru
tions

are needed to
ompute the hash fun
tion and to do the tag
he
k.

4.2 Code s
heduling

The bene�t of SSMT
omes from its ability to s
hedule two independent instru
tion streams so

pipeline stalls are avoided and laten
ies overlapped with other laten
ies or with exe
ution. The

prototype SSMT runtime system
ontains a simple, linear time, greedy
ode s
heduling algorithm.

When register dependen
ies or other pipeline hazards are dete
ted, the instru
tion s
heduler uses

instru
tions from the other thread to pa
k the pipeline. Pipeline laten
y values are stored in a

table, so adding support for a new Alpha pipeline
onsists of �lling in the table.

For dynami
ally s
heduled pro
essors, it is not only important to s
hedule for pipeline stalls, but

also for the memory system stalls. Computation from one pro
ess should be s
heduled to overlap

with memory a

ess laten
y from the other pro
ess. While dynami
ally s
heduled pro
essors try to

hide memory laten
y within a thread, there is a signi�
ant
hallenge to �nding useful instru
tions.

These
an be provided to the hardware by the SEA instru
tion s
heduler.

There is also a notion of fairness in s
heduling
ode. Di�erent appli
ations have di�erent sized

basi
 blo
ks, and bene�t from di�erent degrees of bran
h spe
ulation. The merger
an attempt

to balan
e the number of instru
tions fet
hed from ea
h thread for ea
h translation unit, so the

appli
ations run at roughly the same rate. Using estimates of memory a

ess time would probably

result in a fairer s
hedule.

MIT-LCS-TR-878. 12

4.3 Register allo
ation and naming

There are two important issues involving registers, the �rst is how the register spe
i�ers in a binary

are mapped onto ma
hine registers, and the se
ond is the register requirements of the runtime

system itself.

In order to map program registers onto physi
al registers, the SSMT runtime supports per-

pro
essor register maps. If the host ar
hite
ture has enough registers to support both binaries

(e.g., an ar
hite
ture with 64 integer and 64
oating pointer registers
ould a

ommodate 2 Alpha

binaries), then the register map is simple, e.g., one pro
ess gets registers 0{31, the other 32{63.

The SSMT translator then uses the maps to performs register renaming at translation time.

4.4 Operating system tasks

Sin
e the translator merges two programs, the SSMT runtime needs to perform
ertain operating

system tasks, su
h as address spa
e layout, fault isolation, a

ess to shared state, and system
alls.

Address spa
e layout. The SSMT runtime
ontrols the address spa
e layout. Sin
e the goal

of SSMT is performan
e, appli
ations are mapped into disjoint areas of the address spa
e so that

(unlike Shade and Embra) runtime address translation is not needed.

Fault isolation. Most operating systems guarantee that independent pro
esses are fault iso-

lated from ea
h other. Programs that load from outside their mapped segments (i.e., text, heap,

sta
k, mmaped regions), are generally sent a signal by the operating system. Running under SSMT,

this signal might not be generated. More seriously, a program that stores outside its mapped seg-

ments might not be sent a signal, but worse, it may
orrupt the pro
ess with whi
h it is being

merged. While a large
lass of appli
ations would be willing to trade this level of fault isolation for

performan
e, some would not. More fault isolation
ould be obtained by ar
hite
tural support, or

by sandboxing [WLAG93℄ stores so that it would not be possible for a buggy or mali
ious pro
ess

to
orrupt the data stru
tures of the other pro
ess.

Sharing. Having pro
esses share an address spa
e simpli�es a

ess to shared state. Pro
esses

an request shared memory regions from the SSMT runtime. A

ess to these regions
an be very

eÆ
ient if �ne grained a

ess
ontrol is not needed. If su
h
ontrol is needed, sandboxing or the use

of virtual memory prote
tion (depending on the sharing granularity)
an be used. Spe
ial move

instru
tions
ould also allow appli
ations to share data at the register level.

System
alls. The prototype SSMT runtime simply forwards system
alls to the underlying

operating system. Therefore, both pro
esses blo
k when either does a blo
king system
all. So

long as the operating system exports some me
hanism for dealing with blo
king system
alls|i.e.,

non-blo
king versions of the same
alls, or s
heduler a
tivations [ABLL91℄|the runtime system
an

exe
ute blo
king
alls in a non-blo
king way. If the SEA is being done by the operating system, then

the translator
an be informed that one kernel thread is blo
ked, and the translator will
ontinue

running only the other thread.

4.5 Implementation status of SSMT

Most of the dis
ussed features of SSMT have been implemented in the prototype, but there are

some ex
eptions. The
urrent loader is primitive in that it does not relo
ate dynami
ally linked

binaries|programs are stati
ally linked at disjoint address ranges. Code is
urrently not s
hed-

uled for fairness, i.e. programs
an run at very di�erent rates. The prototype does no per-pro
ess

re
ompilation|
ode is not
urrently res
heduled a
ross basi
 blo
ks. Finally, while di�erent pro-

esses bene�t from di�erent levels of bran
h spe
ulation, it is
urrently uniformly performed for

MIT-LCS-TR-878. 13

both pro
esses.

4.5.1 Merging poli
ies

The poli
y spa
e for the merger is large and, sin
e there are no run-time systems whose purpose is

performan
e, there is a no literature to dire
tly guide poli
y de
isions. Although the merger has

many
apabilities, we are still tuning its performan
e as we
ome to understand its behavior.

One SSMT poli
y question is whether to merge all
ode or to only merge
ode that is heavily

exe
uted. The aggressive approa
h has an advantage in simpli
ity, but the opportunisti
 poli
y

addresses loop smear. In pra
ti
e, the opportunisti
 s
heme has a small advantage.

The other fundamental SSMT poli
y question is how aggressive to make the fet
h unit of the

translator. Currently, the translator aggressively spe
ulates through un
onditional bran
hes, and

a variable number of
onditional bran
hes.

In order to get information for poli
y de
isions, the SSMT runtime uses feedba
k information.

We use ATOM to instrument our exe
utables to measure performan
e and write information from

the exe
ution into a �le, whi
h is read by the SSMT runtime system. Currently, this �le
ontains a

single bran
h predi
tion bit for ea
h program bran
h, and a single bit for ea
h instru
tion indi
ating

if it is exe
uted heavily. We
urrently do not use feedba
k for data-dependent optimizations.

Our ATOM tool also measures jump behavior. If a
ertain register indire
t jump almost always

has the same destination (whi
h is rare be
ause most indire
t jumps are pro
edure returns), its

translation
an be spe
ial
ased from 26 instru
tions to 4 instru
tions. We are
urrently looking for

ways to integrate this optimization with jumps that are not perfe
tly behaved, but whi
h transfer

ontrol to one site very frequently.

The results shown in this se
tion are for di�erent translator poli
ies. The merger always s
hed-

ules
ode for the 21164 pipeline, and always fet
hes through seven un
onditional bran
hes. We

vary the number of
onditional bran
hes that are fet
hed through, and are
urrently looking for a

single optimal solution. An opportunisti
 merging s
heme is used unless indi
ated.

4.6 Experimental evaluation

We believe that SSMT is an interesting appli
ation of SEA, and we wanted to investigate the

feasibility of the te
hnique. Sin
e SSMT de
reases lo
ality and in
reases working set size in order to

redu
e register dependen
ies, it is not likely to be useful for the
urrent generation of ar
hite
tures.

Our goal in building the prototype was to see if any performan
e wins for
urrent ar
hite
tures

were possible, and to measure the ar
hite
tural e�e
ts of SSMT to determine if it might be a good

idea for future ar
hite
tures.

The limited issue width of the 21164, two integer slots, one general purpose
oating point

slot, and one
oating point multiply slot, represents a
hallenging ar
hite
ture for SSMT. There

are limited issue opportunities, and signi�
ant issue restri
tions on some instru
tion types and

instru
tion pairs.

The stati
 s
heduling of the 21164 shows o� the
ode s
heduling algorithms of the SSMT

runtime, but we believe that the SSMT runtime would also be bene�
ial (perhaps more so) for

dynami
ally s
heduled pro
essors. Studies [Fis93℄ have shown that software te
hniques whi
h in-

rease the mix of non-dependent instru
tions in the hardware's limited instru
tion window improve

pro
essor utilization.

MIT-LCS-TR-878. 14

Ben
hmark Time

Se
 16 int reg SEA

mandel 38.6 0.008% -3.6%

ompress 24.9 2.7% 16.1%

swim 46.6 6.0% 2.8%

alvinn 25.8 9.9% -6.7%

ijpeg 31.1 30.0% 7.5%

Table 2: In
rease in exe
ution time due to limiting the integer register sets of some ben
hmarks

ompiled with g

. The \SEA"
olumn reports the additional overhead of running the redu
ed

integer register binary on an SEA. The negative values indi
ate a performan
e improvement

4.6.1 Register set size

Program merging from Alpha binaries to the Alpha 21164 has a fundamental problem be
ause the

binaries are
ompiled to use all 64 ar
hite
turally visible registers (32 integer and 32
oating point).

This
reates heavy
ontention for registers. In order to get performan
e wins on the 21164, this

ontention must be addressed.

Sin
e the ma
hine registers are over
ommitted, register spe
i�ers for di�erent pro
esses are

mapped to the same physi
al register, e.g., pro
ess 0 might keep its value of a0 in a0, while pro
ess

1 might keep its value of t3 in a0. Only one pro
ess
an keep its register value in the register, while

the other pro
ess must load its register value from memory.

While there are optimizations to redu
e the number of register saves and restores, a signi�
ant

number remain. The issue width of the 21164 is not suÆ
ient to hide these instru
tions. In order

to experimentally investigate the potential of SSMT, we redu
ed register
ontention by limiting the

number of integer registers ea
h program was
ompiled with from 32 to 16. Our hypothesis is that

running two 16 integer register binaries on a 32 integer register ma
hine is similar to running two

32 integer register binaries on a 64 register ma
hine. This setup also stresses our register renaming

logi
 as both binaries are
ompiled to use the same 16 registers. We allow ea
h program to use all

32
oating point registers be
ause
ontention for the
oating point register �le is smaller, and we

wanted to interfere with the
ompiler as little as possible. Finally, we note that sin
e we do not

have sour
e
ode for
ertain important system libraries (like most of lib
), our register partitioning

is approximate.

The register maps re
e
t the register partitioning of the integer register �le. Both binaries

make small use of a
ertain range of temporary registers. One binary uses the registers spe
i�ed

in its program, the other binary has its register spe
i�ers translated to the set of infrequently used

temporary registers.

There is still some
ontention for integer registers, and potentially
onsiderable
ontention for

oating point registers. When there is a register
on
i
t (e.g., both programs use
oating point

register 3), the translator
hooses a di�erent register for one of the programs (e.g.,
oating point

register 5). While the translator looks for dead registers (see Se
tion 4.3), it will spill and restore

a live register if it must. If a register is used read-only, it will not be written at the end of the

translation, and if a register's �rst appearan
e is as a destination, its value will not �rst be loaded.

MIT-LCS-TR-878. 15

4.6.2 The measured impa
t of limited integer registers

Before evaluating the performan
e of SSMT on integer register limited binaries, we want to deter-

mine how redu
ing the available integer registers a�e
ted the programs we studied.

The only
ompiler we had a

ess to whi
h allows �ne grained
ontrol over register use is g

. This

is unfortunate sin
e g

 does no
hip spe
i�
 s
heduling for the DEC 21164, so the res
heduling done

by the SSMT runtime is more eÆ
ient than the original s
hedule, plus the bene�t from overlapping

laten
ies.

Sin
e the Gnu fortran
ompiler is not yet supported on the Alphas, we use SUIF [HAA

+

96℄

to translate the fortran ben
hmarks into C, whi
h we
ompiled with g

. The resulting binaries

are less eÆ
ient than versions
ompiled with a Fortran
ompiler, but we believe that they are

ineÆ
ient in a way that penalizes the SSMT runtime. For example, when swim is
ompiled with

the Fortran
ompiler, it spends 60.6% of its exe
ution time stalled on register dependen
ies. When

it is
ompiled by g

 with Fortran support libraries, it only spends 48.0% of its exe
ution time

stalled on dependen
ies. This makes sense be
ause better
ompiler te
hnology
an not remove

basi
 register dependen
ies, it
an only eliminate instru
tions whi
h mask those laten
ies.

Table 2 shows the performan
e impa
t of moving from 32 integer registers to 16 integer registers

(using g

 at the highest level of optimization) for the ben
hmarks we studied in depth.

The impa
t of limiting the number of available registers di�ers widely for di�erent ben
hmarks.

Mandel and
ompress do not make heavy use of integer registers, while alvinn, and espe
ially ijpeg

bene�t from larger integer register sets.

While the performan
e di�eren
es are not always large, 16 integer register binaries often have

a higher per
entage of loads and stores. While this spill
ode usually has good
a
he lo
ality, it

does add to data
a
he pressure. Additionally, stores
an not dual issue on the 21164, so they

are parti
ularly poor instru
tions for the translator. As partial
ompensation, load instru
tions

have a delay slot whi
h the translator
an use, but there are odd issue restri
tions (arising from

a stru
tural hazard for the data
a
he ports) regarding loads and stores that o

ur
lose together

in time. We believe that on balan
e, 16 integer register binaries represent a pessimisti

ase for

SSMT.

Finally, the SEA \overheads" reported in Table 2 are a
tually signi�
ant performan
e gains for

two appli
ations. Our evaluation of base SEA (Figure 2), did not demonstrate these gains be
ause

the base SEA results were generated without using feedba
k information for bran
h predi
tion.

Additionally, we are showing performan
e wins for appli
ations
ompiled with g

 whi
h does not

do
hip-spe
i�
 instru
tion s
heduling.

It is important to note that the gains shown for SSMT (in Se
tion 4.7), are not solely due to

�xing the
ode s
heduling of g

. First, the gains reported here are smaller than the gains for

SSMT, and se
ond our measurements of SSMT show that instru
tion s
heduling is only part of the

win.

4.7 The measured performan
e of SSMT

SSMT on the 21164 slowed down almost all appli
ation pairs we investigated. However, performan
e

was within a fa
tor of 2.5 of the native exe
ution time for almost all pairs indi
ating that the average

ase was not pathologi
ally bad. This agrees with our intuitions that the 21164 ar
hite
ture is not

a good
andidate for SSMT.

However,
ertain aggressive merging poli
ies were able to show performan
e gains for
ertain

appli
ation pairs. By studying some of these
ases, and some
ases where performan
e was redu
ed,

MIT-LCS-TR-878. 16

N SSM
mandel
mandel

N SSM
alvinn
alvinn

N SSM
compress
mandel

N SSM
ijpeg

mandel

N SSM
swim
swim

N SSM
alvinn
swim

N SSM
compress

mgrid

Benchmark pairs

0

20

40

60

80

100

E
xe

cu
ti

on
 T

im
e

(s
)

76.6

58.3
31.3%

55.6 47.7
16.5%

65.0 57.8
12.6%

80.0 73.0
9.6%

99.4
97.1
2.4%

77.2
76.5
1.0%

72.2

89.7
24.3%

Pipe stall
Dcache stall
Icache stall
Scache stall
Instructions

Figure 4: Exe
ution time for several 16 integer register ben
hmark pairs running native (N) and

running under SSMT (SSM) are presented. Aggregate time for ea
h pair is broken down among

stall for pipeline dependen
ies, primary data (D)
a
he re�ll, primary instru
tion (I)
a
he re�ll,

and uni�ed on-
hip se
ondary (S)
a
he re�ll, and instru
tion exe
ution. The exa
t running time

of ea
h ben
hmark pair is given above the bar, and the
hange from native exe
ution to SSMT

exe
ution is given with the SSMT value.

we
an understand the properties of SSMT, and have a persuasive basis for arguing that it will be

useful on more aggressive ar
hite
tures.

A range of appli
ation performan
e is presented in Figure 4. SSMT in
reases
a
he pressure

more than base SEA did, whi
h is no surprise given that the ma
hine must now support the sum

of the appli
ation working sets. The overhead due to SSMT data stru
tures is small.

SSMT greatly in
reases the instru
tion
a
he stall of the measured programs, though the magni-

tude of that stall remains small. This indi
ates that our translation poli
ies work well for programs

with small instru
tion footprints, and it indi
ates that SSMT might be able to redu
e instru
tion

a
he misses on large binaries, so long as the working set of the program or program pair
an �t in

the translation
a
he.

The overhead due to SSMT support pro
edures (presented in Table 3), is also slightly larger

than the base SEA
ase, but it is 3% or less for most of the ben
hmarks we studied.

In general, SSMT was able to obtain performan
e wins by redu
ing the amount of pipeline

stall. In almost every
ase, it in
reased the amount of time spent exe
uting instru
tions. A notable

ex
eption is the alvinn pair. The redu
ed amount of instru
tion runtime for this pair,
oupled with

the data in Table 2 indi
ates that the SSMT runtime is not only eÆ
iently hiding its own overhead,

it is e�e
tively res
heduling alvinn's
ode. This
an be seen from the in
reased IPC as reported in

Table 3.

SSMT's biggest performan
e win (31% throughput in
rease) was for the mandel appli
ation

pair. The SSMT translator is e�e
tively s
heduling the merged
ode to redu
e pipeline stalls, but

MIT-LCS-TR-878. 17

Ben
hmark pair IPC SSMT Runtime

Native SSMT time

mandel mandel 0.57 1.21 0.39%

alvinn alvinn 0.65 0.81 3.12%

ompress mandel 0.63 0.83 0.82%

ijpeg mandel 0.73 0.88 2.93%

swim swim 0.62 0.74 0.48%

alvinn swim 0.63 0.70 3.38%

ompress mgrid 0.66 0.64 6.77%

Table 3: IPC and SSMT runtime system overhead for several 16 integer register ben
hmark pairs.

Overhead due to SSMT support routines is low, but SSMT adds extra instru
tions to the workload.

How these instru
tions are s
heduled in
uen
es the IPC.

unlike the alvinn pair, it is still adding a signi�
ant number of overhead instru
tions. But as we saw

in Se
tion 3.4, the overhead instru
tions for mandel
an be eÆ
iently s
heduled. The
ombination

of these e�e
ts yields an impressive (greater than 2x) in
rease in IPC as reported in Table 3.

While SSMT shows bene�t from
hip-spe
i�
 s
heduling, the wins reported in Table 2 are mu
h

smaller than those reported in Figure 4. The main
ause of the performan
e win in every
ase

is redu
ed pipeline stall. Even if the original binaries were
ompiled with
hip-spe
i�
 s
heduling

all pairs that show a performan
e win, ex
ept the pair alvinn and swim, would
ontinue to show

performan
es win.

Given the data in Table 2, the performan
e gains for the mandel pair and the alvinn pair is still

a gain when measured against a binary (
ompiled with g

) that
an use all 32 integer registers. It

is en
ouraging that for the 21164 there are some
ases for whi
h SSMT provides the most eÆ
ient

exe
ution model.

SSMT relies on the availability of pipeline stall to gain its wins. As seen in Figure 2 pipeline

stall seems plentiful on the 21164, even using advan
ed fortran
ompilers, and wider issue ma
hines

will in
rease this availability [KOHW

+

96℄. However,
oating point intensive appli
ations generally

spend more time waiting for register interlo
ks be
ause the laten
y of
oating point operations is

longer (4
y
les laten
y for a
oating point add on the 21164 as opposed to 1
y
le for most integer

instru
tions) making them more suited for SSMT.

We present the
ompress and mgrid pair as representative of an appli
ation pair that does not

bene�t from SSMT. This pair does not see a redu
tion in pipe frozen time, indi
ating a failure

of our
ode s
heduling algorithm. Additionally, the in
reased time spent in instru
tion exe
ution

indi
ates that the SSMT is adding too many instru
tions, and the de
reased issue rate indi
ates

that it is not s
heduling these overhead instru
tions eÆ
iently.

It is not a
oin
iden
e that three of the six performan
e wins presented are appli
ations merged

with another
opy of themselves. Be
ause our prototype
urrently does not s
hedule
ode for

fairness, be
ause the ben
hmarks do not run for exa
tly the same amount of time, and be
ause

the ben
hmarks run for a relatively short period of time, there is often signi�
ant load imbalan
e

when running under SSMT. One pro
ess �nishes, and up to 40% of the
ombined running time is

onsumed by the slower pro
ess running to
ompletion by itself. When a pro
ess is merged with

another instan
e of itself, both pro
esses run together. Running the appli
ations on their full data

sets would help alleviate this problem, and we believe that future work in our
ode s
heduling

MIT-LCS-TR-878. 18

algorithms will make this less of an issue.

While SSMT is not appropriate for todays ar
hite
tures, our measurements indi
ate that it

is e�e
tive at redu
ing pipeline stall, and that it
an be e�e
tive at
hip-spe
i�
 s
heduling. We

believe that the importan
e of these bene�ts will in
rease as pro
essor te
hnology progresses.

5 Dis
ussion

In this se
tion, we dis
uss some ar
hite
tural features that would bene�t SSM, and we dis
uss the

ar
hite
tural vision enabled by SSM. We have already mentioned how SSM would bene�t from a

wider issue ma
hine, be
ause it
ould s
hedule its bookkeeping instru
tions in the unused slots.

Register set size For SSM to be pro�table, there must either be a larger number of physi
al

registers than are used by most binaries, or instru
tion issue slots must be plentiful. There are

issues in making a larger register set ar
hite
turally visible. The �rst is binary
ompatibility and

the se
ond is instru
tion en
oding. SEA dire
tly addresses binary
ompatibility as binaries are not

dire
tly exe
uted on the pro
essor. However, if an appli
ation is parti
ularly poorly suited for SEA,

we believe that binary translation te
hnology [SCK

+

93℄ has progressed to the point that translating

a RISC instru
tion set between en
odings
an be simply done, and the results are eÆ
ient.

The issues surrounding instru
tion en
oding are more substantial, but are beyond the s
ope of

this paper. Alternatives in
lude alternate en
odings if the number of physi
al registers is 64, or 64

bit instru
tions for larger register �les.

If there are more hardware registers available than are required to run a given appli
ation (or

appli
ation pair), the translator
an use simple heuristi
s to eliminate memory a

esses.

Bran
hes Our measurements for the
hange in bran
h mispredi
tion rates for programs run

both under SEA and SSM vary widely, from small improvements, to a fa
tor of 2 degradation.

However, if the base ar
hite
ture had bran
h predi
tion bits in the instru
tion en
oding, the trans-

lator
ould pass its predi
tion information down to the hardware. We are also investigating ways

of
olle
ting bran
h dire
tion information dynami
ally, so the translator
ould signi�
antly extend

the hardware's predi
tion
apabilities.

In the
ommon
ase, SSM translations require the resolution of multiple bran
h
onditions,

whi
h is potentially expensive to the pipeline. Currently, other performan
e issues are more im-

portant, and with aggressive bran
h spe
ulation, the multiple resolution overhead might be a small

part of the exe
ution time of a translation unit. Still, ar
hite
tural support in the form of a jump

table instru
tion whi
h evaluates multiple
onditions might be useful.

Floating point laten
ies SSM exploits the multi-
y
le laten
y of
oating point and some

integer instru
tions. While these laten
ies have been de
reasing, this has been o�set by wider issue

widths (e.g., on the Alpha 20164 fp laten
y is 6
y
les and 6 missed integer instru
tion opportunities.

On the Alpha 21164, fp laten
y is 4
y
les, and 8 missed integer instru
tion opportunities). While

the availability of transistors might eliminate this laten
y on future pro
essors altogether, memory

referen
e laten
y is mu
h harder to eliminate. We believe that our SSM algorithms
an be tailored

to in
rease the throughput of a dynami
ally s
heduled supers
alar pro
essor by overlapping memory

a

ess laten
y with
omputation.

User interfa
eWhile the work presented in this paper
onsists of exe
utables that are spe
ially

prepared, laun
hed in tandem and run to
ompletion, more
exible user level interfa
es are possible.

These in
lude augmenting the operating system
ommand shell (su
h as the UNIX sh shell) with a

spe
ial pipe
hara
ter; modifying the s
heduler of a user level threads pa
kage; and implementing a

set of shared memory ma
ros (e.g. ANL). As mentioned earlier, it is also possible for the operating

system s
heduler to provide the merging servi
e.

MIT-LCS-TR-878. 19

Impa
t on pro
essor design In designing ILP pro
essors, ar
hite
ts need to balan
e hardware

omplexity with relian
e on sophisti
ated software (e.g., advan
ed
ompilers). The
urrent gen-

eration of dynami
ally-s
heduled pro
essors represents a hardware-intensive solution, while VLIW

pro
essors represent a software-intensive solution. Software-extended ar
hite
tures might allow ar-

hite
ts to revisit this fundamental tradeo�. An SEA
ould ensure binary
ompatibility for user

programs, and
an greatly simplify pro
essor design by performing register renaming, dependen
y

he
king, and
ode s
heduling. This
ould allow pro
essor designers to simplify their design and

make more radi
al
hanges in between
hip version.

We are not sure what the future, or ultimate utility of software-extended ar
hite
tures will be,

but it seems like interposing a layer of software at the ar
hite
ture level opens up new possibili-

ties. In this paper we have dis
ussed how an SEA intera
ts with the pro
essor ar
hite
ture, the

ompiler, and the operating system. In almost every
ase, SEA either provides new fun
tionality,

or it implements some fun
tionality at a more natural level of abstra
tion than it was originally

provided.

6 Con
lusions

In this paper we have demonstrated that a software-extended ar
hite
ture
an be implemented

with very little performan
e overhead. Our implementation of a software extended 266 Mhz Alpha

21164 adds only 1%|30% to the running time of a program. We have also demonstrated that a

software-extended Alpha 21164
an be used to improve system throughput by supporting software

simultaneous multithreading. SSMT trades de
reased lo
ality and in
reased working set size for

in
reased pipeline utilization. While this is of limited value for appli
ations on the Alpha 21164,

our data indi
ates that this tradeo� is appropriate for next generation ma
hines.

This paper establishes the viability of software-extended ar
hite
tures, but it also leaves a

number of open resear
h questions. The key ones are (1) what are good poli
ies for s
heduling

merged programs, (2)
an software-extended ar
hite
tures enable wider a

eptan
e of VLIW, or

allow supers
alar ar
hite
ts to simplify their design and
on
entrate on in
reasing
lo
k rate and

adding more fun
tional units, and (3) what other performan
e bene�ts and new
apabilities
an be

obtained using software-extended ar
hite
tures. We expe
t to investigate these issues in the near

future.

7 A
knowledgments

We would like to thank Eddie Kohler for doing dead register analysis, and Bert Halstead and DEC's

Cambridge Resear
h Lab for letting us use their ma
hines.

Referen
es

[ABLL91℄ T. E. Anderson, B. N. Bershad, E. Lazowska, and H. M. Levy. S
heduler a
tivations: E�e
tive

kernel support for the user-level management of parallelism. In Pro
. Thirteenth ACM Symp.

on Operating System Prin
iples, page 95, Pa
i�
 Grove, CA, O
t 1991.

[ATLLW96℄ Ali-Reza Adl-Tabatabai, Geo� Langdate, Steven Lu

o, and Robert Wahbe. EÆ
ient and

language-independent mobile programs. In Pro
. of PLDI, may 1996.

[CK94℄ Robert F. Cmelik and David Keppel. Shade: A fast instru
tion set simulator for exe
ution

pro�ling. In SIGMETRICS, 1994.

MIT-LCS-TR-878. 20

[CSB96℄ Bradley Chen, Mi
hael D. Smith, and Brian N. Bershad. Morph: a framework for platform-

spe
i�
 optimizations. Te
hni
al Report White paper, Harvard University, Mar
h 1996.

[Dig℄ Digital. Fx!32: x86 win32
ompatibility on aplha. Te
hni
al Report

http://www.servi
e.digital.
om/fx32/.

[Eng96℄ Dawson R. Engler. v
ode: a retargetable, extensible, very fast dynami

ode generation system.

In Pro
. Programming Language Design and Implementation, 1996.

[ER℄ John Edmondson and Paul Rubinfeld. An overview of the alpha axp(tm) mi
roar
hite
ture.

In slides.

[Fis81℄ J. A. Fisher. Tra
e s
heduling: a te
hnique for global mi
ro
ode
ompa
tion. IEEE Transa
-

tions on Computers, 30:478{490, July 1981.

[Fis93℄ Joseph A. Fisher. Global
ode generation for instru
tion-level parallelism:tra
e s
heduling-2.

In HP Laboratories Te
hni
al Report HRL-93-43, June 1993.

[Gil℄ Frode Gill. http://www.krs.hia.no/ fgill/mandel.fhtml,
g.

[Gos95℄ James Gosling. Java intermediate byte
odes. In Pro
eedings of ACM SIGPLAN Workshop on

Intermediate Representations, Mar
h 1995.

[GYCS96℄ Ni
olas Gloy, Cli� Young, J. Bradley Chen, and Mi
hael D. Smith. An analysis of dynami

bran
h predi
tion s
hemes on system workloads. In Pro
. 23th Annual Symposium on Computer

Ar
hite
ture, pages 12{22, May 1996.

[HAA

+

96℄ M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.W. Liao, E. Bugnion, and

M. S. Lam. Maximizing multipro
essor performan
e with the suif
ompiler. In IEEE Computer,

De
ember 1996.

[Jon93℄ Mi
hael B. Jones. Interposing agents: Transparently interposing user
ode at the system

interfa
e. volume 27, pages 80{93, De
 1993. 14th ACM Symposium on Operating Prin
iples.

[KOHW

+

96℄ Basem A Nayfeh Kunle Olukotun, Lan
e Hammond, Ken Wilson, , and Kunyung Chang. The

ase for a single-
hip multipro
essor. In Pro
eedings of ASPLOS-VII, O
t 1996.

[LS95℄ James Larus and Eri
 S
hnarr. Eel: Ma
hine independent exe
utable editing. In Pro
eedings

of PLDI, June 1995.

[MEP96℄ Po-Yung Chang Marius Evers and Yale N. Patt. Using hybrid bran
h predi
tors to improve

bran
h predi
tion a

ura
y in the presen
e of
ontext swit
hes. In Pro
. 23th Annual Sympo-

sium on Computer Ar
hite
ture, pages 3{12, May 1996.

[MS96℄ Larry M
Voy and Carl Staelin. lmben
h: Portable tools for performan
e analysis. In USNIX,

Jan 1996.

[Pat85℄ D. A. Patterson. Redu
ed instru
tion set
omputers. Communi
ations of the ACM, 28(1):8{21,

January 1985.

[RBH

+

95℄ Mendel Rosenblum, Edouard Bugnion, Stephen A. Herrod, Emmett Wit
hel, and Anoop

Gupta. The impa
t of ar
hite
tural trends on operating system performan
e. In SOSP, 1995.

[RS94℄ Rahul Razdan and Mi
hael D. Smith. High-performan
e mi
roar
hite
tures with hardware-

programmable fun
tional units. In Pro
eedings of the 27th Annual IEEE/ACM Intl. Symp. on

Mi
roar
hite
ture, pages 172{180, November 1994.

[SCK

+

93℄ R. L. Sites, A. Cherno�, M. B. Kirk, M. P. Marks, and S. G. Robinson. Binary translation.

Communi
ations of the ACM, 36(2):69{81, February 1993.

[SE94℄ Amitabh Srivastava and Alan Eusta
e. Atom: a system for building
ustomized program

analysis tools. SIGPLAN Noti
es, 29(6):196{205, June 1994.

MIT-LCS-TR-878. 21

[Smi91℄ Mi
hael D. Smith. Tra
ing with pixie. Te
hni
al Report Memo from Center for Integrated

Systems, Stanford University, April 1991.

[SPE95℄ SPEC. Spe

pu 95 ben
hmark suite. In System Performan
e Evaluation Cooperative, 1995.

[TEE

+

96℄ Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Ja
k L. Lo, and Rebe

a

Stamm. Simultaneous multithreading: Maximizing on-
hip parallelism. In Pro
eedings of the

23nd International Symposium on Computer Ar
hite
ture, May 1996.

[TEL95℄ Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: Maxi-

mizing on-
hip parallelism. In Pro
eedings of the 22nd International Symposium on Computer

Ar
hite
ture, June 1995.

[Wal86℄ David W. Wall. Global register allo
ation at link time. In Digital resear
h report 86.3, O
t

1986.

[Wal91℄ David W. Wall. Limits of instru
tion-level parallelism. In ASPLOS-IV, pages 176{189, Santa

Clara, California, 1991.

[WLAG93℄ R. Wahbe, S. Lu

o, T. Anderson, and S. Graham. EÆ
ient software-based fault isolation. In

SOSP14, pages 203{216, De
ember 1993.

[WR96℄ Emmett Wit
hel and Mendel Rosenblum. Embra: Fast and
exible ma
hine simulation. In

The pro
eedings of ACM SIGMETRICS `96: Conferen
e on Measurement and Modeling of

Computer Systems, 1996.

[YP92℄ Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive bran
h

predi
tion. In Pro
. 19th Annual Symposium on Computer Ar
hite
ture, pages 124{134, may

1992.

