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1 INTRODUCTION
Highly Configurable Systems (HCSs) are systems with parameters so
that users can configure the functionality and running environment
of the system. An active research topic in HCSs is learning an
accurate performance model. A performance model aims to predict
the performance of a configuration based on its parameters. A
performance model is valuable to understand the properties of an
HCS and find configurations that have optimal performance.

Prior work utilized different techniques including multivariate
and [5–7, 13]. However, they were evaluated only on small HCSs
(<54 parameters). Recently, Acher et al. [2] tried a variety of different
machine learning techniques on a Linux kernel (>15000 parameters),
which yielded lower accuracy than their predecessors’ findings.
Applicability of prior work on larger HCSs is unknown, while Acher
et al. mentioned that some known machine learning approaches
are not applicable for the scale of Linux.

We aim to evaluate state-of-the-art performance modelling tech-
niques for larger HCSs (90 to 988 parameters). One thing we are
particularly interested in is to use small training sets and see if we
can achieve good results for cases where training data is limited,
which as commonly pursued by prior work. In addition, we aim
to analyze the results and gather an understanding on why some
methods cannot scale and why some methods work better than oth-
ers. Furthermore, we will try to improve the accuracy by applying
different dimensionality reduction techniques, such as Principal
Component Analysis (PCA).

So far, we have replicated two state-of-the-art approaches, DE-
CART and DeepPerf. While we could observe similar accuracy for
the small HCSs that they used for evaluation, both approaches
showed much higher prediction error for larger HCSs. We plan to
investigate the cause of this issue and find ways to mitigate the
problem.

2 BACKGROUND
2.1 Highly Configurable Systems
HCSs define parameters which represent increments in system
functionalities [? ]. A user can customize an HCS by selecting the
value of its parameters and produce an executable configuration.
Real-world HCSs often have a large number of parameters. The
size of an HCS configuration space, the set of all configurations,
can exceed 1082, which is the estimated number of atoms in the
universe [15].

In HCS, most parameters are Boolean and have complex depen-
dencies. These dependencies are usually known and specified to
manage the valid selection of the user. Dependencies can make

many parameter combinations invalid so that merely random se-
lecting the value of individual features rarely yields a valid config-
uration [9]. For example, only 10−59% of all possible combinations
of parameters in the Fiasco micro-kernel [1] are legal [8].

Due to its diversity of selection, users may want to find a config-
uration with certain performance such as response time or memory
usage. Predicting the performance of a configuration, however,
is not trivial. Parameters often affect the performance in a non-
linear manner, while understanding its effect requires analyzing
the performance of different configurations as performance is a
comprehensive property of a configuration [11]. However, con-
figuration data are often unavailable and costly to collect. As an
extreme case, a new power management system may take weeks
to evaluate a configuration while there are no prior data available
to utilize [10, 14]. This raises a need to learn a performance model
of an HCS with practical effort.

2.2 Learning Performance Models for HCSs
A number of approaches were proposed to learn a performance
model fromHCSs.We describe here some state-of-the-art approaches.

DECART [5] usesClassification and Regression Tree (CART)method
to learn a performance model. CART analyzes random samples and
creates a decision tree based on parameters identified as signifi-
cant to performance.Prediction involves traversing the tree based
on parameter values of a given configuration. DECART improves
the accuracy of the CART model with automated resampling and
parameter tuning.

SPLConquerer [13] uses step-wise linear regression to assign
performance attributes to features and their interactions. Instead of
random sampling, SPLConquerer uses different sampling heuristics
to select the configurations based on their feature values. Predic-
tion adds up the attribute value of features selected by a given
configuration.

PerLasso [7] formulate the performance model as a Boolean func-
tion and treat the parameters as Fourier coefficients to provide
a bound on accuracy over number of samples. Then to learn the
coefficients, they use LASSO regression.

DeepPerf [6] is a deep neural net framework designed to effec-
tively model performance for HCSs. It uses a multi-layered deep
feed forward neural net with L1 regularization on the weights of
the first layer. DeepPerf includes a system for automatic parameter
sweeping to optimize hyper-parameters 𝜆, learning rate, and the
number of layers of the net.

These approaches report that they can achieve small perfor-
mance estimation error (< 10%) with using under 5𝑛 samples in
overall where 𝑛 is the number of parameters in an HCS. Their eval-
uation, however, were all conducted on HCSs with small number
of parameters where the largest HCS had only 54 parameters. Real-
world HCSs often have much larger parameters but the scalability
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of those methods are unknown yet. Thus, we plan to evaluate these
approaches on larger HCSs and analyze the results for possible
improvements.

2.3 Applicable Machine Learning Approaches
Aside from the methods mention in the section above, a wide array
ofmachine learning techniques is mentioned in the literature on per-
formance modeling of configurable systems, with varying degrees
of success. Linear regression, polynomial regression, classification
and regression trees (CART), neural networks, random forests, and
support vector machines (SVM) are among the prominent methods
being successfully applied, as presented in [12].

When looking at machine learning approaches for configurable
systems, there are two main considerations: predictive power, and
interpretability of results . Interpretable results means that the
outputs of the machine learning algorithm can provide a human
operator useful information about the relationship between the
parameters and the performance, such that she could make bet-
ter informed decisions when selecting configuration options. In
other words, information on which parameters, or combinations of
thereof, are likely to influence the performance, and in what way.
Interpretability and prediction power are two distinct goals, and
different techniques are better suited for each one. If interpretability
is of concern, then two of the strongest function approximation
techniques, neural networks and SVMs, are not suitable, as very
little could be understood from looking on weights of these models.
In this case, some of the successful approaches include Lasso and
CART. If we are concerned with predictive power alone, there are
no restriction on the techniques that can be used.

2.3.1 Regularization. One technique that has been popular in a
few recent works is using L1 regularization [6]. As described by Ha
et al. [7], in configurable software systems the Fourier coefficients
of the performance as function of the configuration parameters are
presumed to be highly sparse. This implies that only a subset of the
configuration parameters has significant impact on the performance.
Based on that assumption of sparsity of configurable systems, that
is supported by empirical results in several papers [4, 14], adding
L1 regularization should help reach better prediction accuracy. The
authors of the DeepPerf paper reported improving performance
of a deep neural network model by introducing L1 regularization,
achieving better results then any previous methods on smaller
HCSs.

2.3.2 Feature Selection. For highly configurable software systems,
due to the large number of inputs feature selection may play an
important role in successful application of machine learning tech-
niques [2]. Features selection be done manually based on prior
knowledge of the system of which configuration parameters are
likely to be influential [2, 12]. A different way to reduce the number
of features is by removing features that have low variance, based
on the assumption that. Another important is removing highly
correlated set of features, for example if features 𝑋1 and 𝑋2 have a
correlation of 1, then they are in essence, one feature and could be
removed from the set. A step up from this is using PCA to provide
a reduced set of features capturing the most important correlation

information, however this has not been widely discussed in the
literature on configurable systems, to the best of our knowledge.

3 IMPLEMENTATION
For the implementation of the DeepPerf we used the original code
of the authors of the papers, available online.1. DeepPerf has a
system to automatically tune the hyper-parameters. For the im-
plementation of DECART we also used the original code from the
authors 2. DECART is based on CART model, but automatically
search for the optimal hyperparameters for a given HCS. The hyper-
parameter was sampled by grid search and evaluated by 10-fold
cross validation which are suggested as the default by the authors.

In addition, we did our own implementation of feed forward
neural net framework in PyTorch, based on the DeepPerf tool (The
original was implemented in Tensorflow). We used python 3.6 and
PyTorch 1.4.0+cpu [reference]. We made some modifications to
the neural architecture, 3. Our neural net topology is similar to
the that of DeepPerf, however in our case we set the number of
layers to be eight, and instead, we fluctuate the number of nodes
in each layer to modify the model’s capacity. We do not scale the
inputs as they are all zeros or ones, but since the performance value
ranges value drastically between different systems we normalize
the outputs to be between 0 and 100. For out optimizer we used
the Adam optimizer with the default recommended values, and we
initialized the weights using Xavier initialization method [3]. At
this point we are still not using cross-validation of any kind, are
still working out the architecture.

4 EVALUATION
4.1 Research Questions
We defined following research question to evaluate existing ap-
proaches.

• RQ1: Do prior work scale for larger HCSs?
We also defined additional research questions to analyze and

improve over the prior work.
• RQ2: Can we find a better neural architecture for perfor-
mance models?

• RQ3: Can we improve the accuracy of the model by dimen-
sionality reduction?

In this report, we show the data we have collected so far for RQ1
and RQ2.

4.2 Experiment setting
We replicated state-of-the-art performance modeling approaches
to evaluate their scalability and compare with our approach. For
the state-of-the-art approaches, we used DECART, DeepPerf, and
PerLasso which are described in Section 2.2. Additionally, we ran
our proposed neural network to see how it fares against the recent
state of the art methods.
1https://github.com/DeepPerf/DeepPerf

2https://github.com/jmguo/DECART
3Work in progress - this serves the base into our own ML method for performance
prediction for HCS. We reserve the possibility of using different tools aside from deep
learning,such as SVM, PCA techniques ets, to improve the results. TBD at this point
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For the evaluation, we replicated the experiment setting that
was commonly used by prior work [5–7, 13]. For each HCS, the
performance model was trained with 𝑛, 3𝑛, and 5𝑛 samples to see
the effect of sample size, where 𝑛 is the number of parameters in
the HCS. Once the model is trained, we used 𝑛 additional samples
to derive the prediction accuracy.

For the prediction accuracy, we measured the mean relative error
(MRE), also called mean absolute percentage error (MAPE), which
is defined as follows:

𝑀𝑅𝐸 [%] = 1
|𝐶 |

|𝐶 |∑
𝑖=0

|𝑦 − 𝑦 |
𝑦

· 100

|C| is the size of the data set, 𝑦 is the predicted performance value,
and 𝑦 is the real performance value of the configuration sample.

We did 5 experiments to control the randomness and reported
the mean value of these 5 results, together with the 95% confidence
bounds.

4.3 Subject Systems
We first evaluated with six smaller HCSs which were commonly
used in prior work as a sanity check:

• LLVM is a compiler infrastructure with 11 parameters. Test
suite compilation times were measured.

• x264 is a video encoder library for H.264/MPEG-4 AVC for-
mat with 16 parameters. Sintel trailer encoding times were
measured.

• BerkeleyDBC is an embedded database system with 18 pa-
rameters. Benchmark response times were measured.

• Dune is a multi-gird solver with 14 parameters. Time to
solve a Poisson’s equation were measured.

• HSMGP is a stencil-grid solver with 17 parameters. Time to
solve a Poisson’s equation were measured.

• HiPAcc is a image procssing framework with 25 parame-
ters. Time needed for solving a test set of partial differential
equations were measured.

To evaluate the scalability of prior work, we used five HCSs that
are based on the KConfig configuration tool [8]:

• axTLS is a server framework with 94 parameters.
• Toybox is a Linux command line utility with 316 parameters.
• Fiasco is a real time microkernel with 234 parameters.
• Busybox is a executable UNIX common utilities with 998
parameters.

• uClibc-ng is a library for embedded Linux with 269 param-
eters.

Performance models for these HCSs predicted the build size of the
configurations.

4.4 Results
So far, we used DECART to learn the data from all HCSs except
Dune, HSMGP, HiPAcc, and Busybox. For DeepPerf, we learn the
data from larger HCSs. We did not have time to run our method on
the smaller HCS therefore the empty column in table 1. Since our
method is bound to change anyhow as it currently not offering a
major improvement for larger HCSs, it is of not high importance at

this point. We will add the data as we obtain the samples and train
the model.

Table 1 shows the results for the smaller HCSs. The rows repre-
sent different HCSs and the columns represent different approaches.
For each HCS and sample size, the lowest MRE is highlighted as
bold. Note that, the data from DeepPerf is taken from their paper
to show a comparison. We will replace them with our replicated
data in the final report. As we have not collected the data from our
approach yet, the entry for our method is left as to be announced
(TBA).

Table 1: Average MRE and 95% confidence interval for
smaller HCS

Subject System Sample Size DECART DeepPerf Our method
LLVM n 5.38±0.52 5.09±0.80 TBA

3n 4.1±0.31 2.54±0.15 TBA
5n 2.43±0.13 1.99±0.15 TBA

BerkeleyDBC n 150.16 ±153.23 133.6±54.33 TBA
3n 8.60 ±2.40 13.1±3.39 TBA
5n 6.47 ±3.88 5.82±1.33 TBA

X264 n 10.59 ±1.27 10.43 ±2.28 TBA
3n 5.38 ±0.83 2.31±0.31 TBA
5n 2.58 ±0.82 0.87±0.11 TBA

From Table 1, we observed:
• For all HCSs and approaches, MREwas below 10% for sample
sizes 3𝑛 and 5𝑛.

• For all HCSs and approaches, both mean and variance of
MRE decreased as sample size increases.

• DeepPerf showed smaller MRE compared to DECART with
an exception of BerkeleyDBC using 3𝑛 samples.

• For DECART, the difference between our MRE and the MRE
reported by the authors are less than 2.5%p.

Then, table 2 shows the results for the larger HCSs. Its format is
the same as Table 1.

Table 2: AverageMRE and 95% confidence interval for larger
HCS.

Subject System Sample Size DECART DeepPerf Our method
axTLS 𝑛 35.35±0.75 36.84±5.25 32.49 ± 3.76

3𝑛 33.02±1.00 31.77±2.03 30.14 ± 1.39
5𝑛 32.16 ±0.41 31.70±1.87 29.94 ± 1.58

Fiasco 𝑛 39.06 ±1.19 36.38±1.87 44.79 ± 1.58
3𝑛 37.13 ±1.23 36.34±1.36 34.25± 2.03
5𝑛 36.011±0.49 37.74±1.69 34.00 ± 0.94

Toybox 𝑛 10.39 ±1.49 10.3 ±0.05 12.93 ± 0.25
3𝑛 10.35 ±0.52 10.35±0.12 11.39 ± 0.29
5𝑛 10.07 ±0.48 10.35±0.37 10.62 ± 0.17

uClibc-ng 𝑛 1871.02±174.20 1812.788±259.82 1391.68 ± 121.41
3𝑛 1942.22±74.33 1934.16±86.21 1252.26± 144.82
5𝑛 2012.97±62.69 1996.27±232.56 1197.58 ± 119.24

From Table 2, we observed:
• Both DECART and DeepPerf had much higher MRE com-
pared to smaller HCSs. This is apparent for uClibc-ng, where
the results for all samples sizes had MRE larger than 1250%.

• Larger sample size did not necessarily led to smaller MRE
for DECART and DeepPerf. We confirmed that except for
uClib-ng, the loss did not diverge.
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• DeepPerf does not outperform DECART as much as smaller
HCSs.

• Our approach showed smaller MRE except Toybox with all
sample sizes and Fiasco with 𝑛 samples.

4.5 Discussion
RQ1. Do prior work scale for larger HCSs?

From our experiments, prior work showed substantially higher
MRE for larger HCSs. Contrary to our expectations, larger sample
sizes did not necessarily yield lower MRE for larger HCSs. Thus,
their claim that the performance model can be learned with small
number of samples does not hold for larger HCSs.

For now, we are not clear why larger HCSs are showing such
a high MRE. For uClibc-ng, we the loss function diverged during
training, which suggest better hyper-parameter optimization is
required. For the other systems, we are wondering if the data is too
sparse to the samples we have is not enough to reach MRE close to
the ones shown for smaller HCSs.

For the rest of this project, we will try to analyze the issues
such as training with larger sample sizes, applying dimensionality
reduction, and utilizing other learning methods more suitable for
sparse data.

Conclusion: Prior work could not scale to larger HCSs.

RQ2: Can we find a better neural architecture for perfor-
mance models?

We observed that our approach shows slightly lower MRE com-
pared to other approaches in general. It suspect that our manual
tuning was better fitted for the specific HCSs we tested, and pro-
vided better results than their automatic hyperparameter selection.
Nevertheless, the MRE of our approach is still very high compared
to the result. We believe that analyzing the issue of prior work may
provide us a way to reduce the MRE further.

Conclusion: Our approach shows slight improvement, but
not significant yet.

5 CONCLUSION
State-of-the-art performance modeling approaches for HCSs aim
to achieve good estimation accuracy with using small number of
samples as possible. Although they have demonstrated that it is
possible for small HCSs, our evaluation shows that larger HCSs
cannot be learned as such. We believe that this is a big limitation.
The dataset for small HCSs were introduced in 2012 [14] and still
utilized to date, which kept this scalabiltiy issue unforeseen.

For the remainder of this project, we aim to replicate more ap-
proaches and try to identify the reason behind this limited scalabil-
ity. We believe that identifying this cause is the first step to propose
a scalable method that outperforms prior work.
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