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Machine Learning Research @ TRI <

Sim-to-real transfer on unseen real images
No real labels (semantic or depth) were used

Scene Understanding
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Behavior Modeling & Prediction

Learning for Planning & Control

Simulation & Auto-labeling
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Anatomy of Autonomy

Data H Perception H Prediction H Planning H Control
W

—

Conway's Law (paraphrased)
A system's design is isomorphic to the structure of the field.

Leaky Abstraction Law
All non-trivial abstractions, to some degree, are leaky.

Corollary: The Arrows are Performance Bottlenecks.
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Do we even need to bother with modularity? ©

Demonstrations (good or bad): trillions of km/year!

Imitation Learning: simple, scalable, end-to-end

Predicted

Exploring the Limitations of Behavior Cloning for Autonomous Driving, L D w{jﬁ"
F. Codevilla, E. Santana, AM. Lopez, A. Gaidon, ICCV'19 (oral) T Resver | 10
Bigger models, pretraining, more data helps... but D J
. . . Task Variance
Dataset Biases & Variance issues . Eoy 2
. Dfnse 42‘72
+ Causal Confusion (de Haan el, NeurlPS'19) T
CILRS (ImageNet) Regular 12%
Dense 38%
No shortcuts: need intermediate representations i,
Does computer vision matter for action? Zhou et al, Science Robotics 2019 -:> 2! ", —
Driving Through Ghosts: Behavioral Cloning with False Positives, Blhler et al, IROS'20 s Ii :
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Robustness In Perception
3R&3P

of Randomness in Prediction

Autonomy

Risk-awareness in Planning
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Robustness in Perception: Data

Assumption: no expectation for a robot to

recognize something completely new.

Domain Coverage: World-scale Fleet Learning

Problem: cannot be supervised (too much data)

ONE DOES NOT SIMPLY,

|
»°
LABEL ALL THE DATA
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Supervised Learning

Raw Data —» Model — Predictions —

Easy to acquire

Target
Value/Labels

Expensive / Difficult to acquire

— -
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Self-Supervised Learning

Raw Data

Easy to acquire

—»  Model

—_—

>

Predictions —

Prior Knowledge
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Pseudo-LiDAR / Monocular Depth Estimation

~Single RGB Image Predicted Depth Image

—_— _— e — e

MonoDepth
Network
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Self-Supervised Structure-from-Motion (SfM)

frame t

frame t-1 —

Monocular
Video

MonoDepth
Network

—  Depth

—P>

Unsupervised learning of depth and ego-
motion from video, Zhou et al, CVPR'17

Digging Into Self-Supervised Monocular
Depth Estimation, Godard et al, ICCV'19

© 2020 Toyota Research Institute. Public.
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<¢—— View Synthesis

Geometric Constraints
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Why Monocular Depth? (Driving, Robotics)

1 camera = cheapest sensor suite, most common
Complex sensor suites: wide baseline, redundancy
Monocular Depth = main bottleneck for 3D detection

Robust 3D Vision thanks to
Large-Scale Self-supervision?

© 2020 Toyota Research Institute. Public. 12
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Robustness in Perception: Data
Self-Supervised Learning: Geometry as Supervision

SuperDepth @ ICRA'19, Robust Semi-Sup. monodepth @ CoRL'19, Two-Stream Networks for Self-Sup.
Ego-Motion @ CoRL'19, Semantically-Guided monodepth @ ICLR'20, Packnet-SfM @ CVPR'20 (oral), Neural
Ray Surfaces @ 3DV'20 (oral), Monodepth for Soft Visuotactile Sensors @ Robosoft'21, Packnet-SAN @
CVPR'21, Geometric Unsup. Domain Adaptation @ ICCV'21, pre-training for 3D detection @ ICCV'21, ...

Ii(pe) = 1(ps) | ps ~ KTiss De(pe) K" pe

Sim-to-real transfer on unseen real images
No real labels (semantic or depth) were used
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https://qithub.com/TRI-ML/packnet-sfm



https://arxiv.org/abs/1810.01849
https://arxiv.org/abs/1910.01765
https://arxiv.org/abs/1910.01764
https://arxiv.org/abs/1910.01764
https://arxiv.org/abs/2002.12319
https://arxiv.org/abs/1905.02693
https://arxiv.org/abs/2008.06630
https://arxiv.org/abs/2008.06630
https://arxiv.org/abs/2101.01677
https://arxiv.org/abs/2103.16690
https://arxiv.org/abs/2103.16694
https://arxiv.org/abs/2108.06417
https://github.com/TRI-ML/packnet-sfm

Robustness in Perception: Data

Analysis by Synthesis: Vision as Inverse Graphics via Differentiable Rendering

ROI-10D @ CVPR'19, SDFLabel @ CVPR'20 (oral), MonoDR @ ECCV'20, DR Survey @ arxiv'20,
Single Shot Scene Reconstruction @ CoRL'21

’/ : (( Meta N
Materials
Image )
: RGB
Lights > > Image |

»{ Objective Ground J
Render ;
cameras | 4=~ 1 [— Depth -+ Function Truth
Image )
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Scene Parame ters Rendering Output

(IS

Geometry

Optimization using a Differentiable Renderer
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Common Self-Supervision Pipeline with Differentiable Rendering


https://arxiv.org/abs/1812.02781
https://arxiv.org/abs/1911.11288
https://arxiv.org/abs/2009.14524
https://arxiv.org/abs/2006.12057
https://openreview.net/forum?id=CGn3XKSf7vf

Single-Shot Scene Reconstruction

Sergey Zakharov, Rares Andrei Ambrus, Dennis Park, Vitor Campagnolo Guizilini, Wadim Kehl,
Fredo Durand, Joshua B. Tenenbaum, Vincent Sitzmann, Jiajun Wu, Adrien Gaidon, CORL'21 (paper)

Fully editable and re-renderable model of a 3D scene from a single image
Decompose the scene into object instances and background

2D/3D optimization based on differentiable rendering

© 2020 Toyota Research Institute. Public. 15 / ) TOYOTA
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https://openreview.net/forum?id=CGn3XKSf7vf

Robustness in Perception: Data

Beware of Bias: Adaptive Regularization of the Long Talil

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss, K. Cao et al, NeurlPS'19
Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization, K. Cao et al, ICLR'21

= Ground Truth

A
. N . % © — if-
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Robustness in Perception: Data

Provable Guarantees for Self-Supervised Deep Learning with Spectral

Contrastive Loss, Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, Tengyu Ma - NeurlPS'21 (oral)

Self-supervised Learning is More Robust to Dataset Imbalance, Hong Liu, Jeff Z.
HaoChen, Adrien Gaidon, Tengyu Ma, arxiv'21
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https://arxiv.org/abs/2106.04156
https://arxiv.org/abs/2106.04156
https://arxiv.org/abs/2110.05025

Robustness in Perception: Redundancy

Redundancy: sensors lie (Byzantine Generals)
— Combine Radar + Lidar + Cameras + IMU + ...
Bottleneck: 3D Detection with Cameras (< Lidar)

Approach:
- Cross-sensor Auto-Labeling (2D-3D)

- Self/Semi-Supervised "pseudo-lidar”

Robust Semi-Sup. monodepth @ CoRL'19,
SDFLabel @ CVPR'20 (oral), Packnet-SAN @
CVPR'21, Full Surround Monodepth @ arxiv'21



https://arxiv.org/abs/1910.01765
https://arxiv.org/abs/1911.11288
https://arxiv.org/abs/2103.16690
https://arxiv.org/abs/2104.00152
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https://docs.google.com/file/d/1rj1YWtZiThonsAA7HSWbSem7_-pGQc3O/preview

Robustness in Perception: Efficiency

Many sensors + complex online fusion
— Deployment challenges (runtime, energy, stability...)

Efficiency: Core to Robustness! .

o Ours
E \ & Ouns (Optimized)
¢ # Wider-MNV2 ~e- DeeperLab

- Hardware optimization R

- Sharing Computations

Real-Time Panoptic Segmentation from Dense Detections, R. Hou, J.
Li et al, CVPR'20 (oral), Hierarchical Lovasz Embeddings for
Proposal-free Panoptic Segmentation, Kerola et al, CVPR'21



https://arxiv.org/abs/1912.01202
https://arxiv.org/abs/2106.04555
https://arxiv.org/abs/2106.04555
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Data + Redundancy + Efficiency
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Randomness in Prediction: Intent
Human Intent: /atent yet governs Action

Approach: infer from Interactions and Context

Graph Convolution | Prediction

|
|
Pedestrian :

__________ N Pedestrian ) : >

Car §  TTf - Car : GRU
.,} Temporal ” ://"*
ey Connection =L A B4 o

Car ax’ T M 1
b - at :
|
I
I

Scene

Parsing , Classifier

' Spatiotemporal Relationship Reasoning for
Pedestrian Intent Prediction, RA-L & ICRA'20
STIP: Stanford-TRI Intent Prediction

(t +k') http://stip.stanford.edu/

© 2020 Toyota Research Institute. Public. 23 ) TOY
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http://stip.stanford.edu/

Randomness in Prediction: Multi-Modality <
Contingency: Predict Distribution over Plausible Futures

Structure Prediction like Human Decision-Making Process

It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction,
K. Mangalam, H. Girase, S. Agarwal, K-H. Lee, E. Adeli, J. Malik, A. Gaidon, ECCV 2020 (oral)

Learn distribution of plausible destinations (intents)
Condition trajectory forecasting on sampled endpoints
Plan following social norms




Randomness in Prediction: Uncertainty <

Probabilistic Robotics: Every State is a Distribution!
Modular System: Uncertainty Must Propagate Throughout
Predicting Uncertainty: typically the main focus of research

Open challenge: using Uncertainty Upstream and Downstream

Data H Perception H Prediction H Planning H Control
I

w—
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Using Upstream (Perceptual) Uncertainty

r

Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty (HAICU), Ivanovic et al, arxiv:2104.12446

)
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https://arxiv.org/abs/2104.12446

Using Upstream (Perceptual) Uncertainty

PUP: new dataset of driving logs with Perceptual Uncertainty (in

challenging scenes for tracking) for Prediction

Class

PUP (Ours)

Lyft Level 5

S probs

Num. (%) Sprobs

bicycle
car

largevehicle

motorcycle
pedestrian
unknown

1.60
1.10
1.30
1.57
1.44
0.05

0.IM (0.4)  0.09
5.0M (24.5)  0.00
0.7M (3.3)  0.01
4.6M

1 (71.8)  0.00

Sprobs =

For reference, the maximum possible entropy for the PUP
dataset is In(11) = 2.40 (uniform class probabilities)

© 2021 Toyota Research Institute. Confidential. Do not distribute.
© 2020 Toyota Research Institute. Public
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Using Upstream (Perceptual) Uncertainty
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Using Upstream (Perceptual) Uncertainty
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Using Upstream (Perceptual) Uncertainty

Trajectron++ Ours (One-Hot) Ours
4 ——=- History ,,’
/ === Ground Truth / o
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Uncertainty Representation for Control 0)

MATS: An Interpretable Trajectory Forecasting Representation for Planning and Control, B. lvanovic, A.
Elhafsi, G. Rosman, A. Gaidon, M. Pavone, CoRL'20

@ ¥ (
t+1) _ A(t)g(2) (1) 45 () () (1) 3 ()

- S, _Az S, +Bz Up +Cz _I_Qz W

e & scene ego control . . .
f}’ By o5 %7)?\7 dynamics offect Inearization uncertainty

v a .
S Blue = Dynamics, Green = Learned
Robot A, 0 0 Xg B, ¢ Q
- An  Ap Ay X —I_ B, Ur _I_ C; _I_ Q, w

Vehicle As; Ay Ay X3 B; C3 Qs
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Control-Aware Prediction Objectives (CAPO) 0)

Objective Mismatch: forecasting metrics are unaware of their use

CAPO: weight prediction metrics by their effect on control
- Cross-attention weighting [Mercat et al, ICRA'20]
- Counterfactual weighting: Action Discrepancy based on resampling

Improves forecasting where it matters most (potential collisions)

Control-Aware Prediction Objectives for Autonomous Driving
Rowan McAllister, Blake Wulfe, Jean Mercat, Logan Ellis, Sergey Levine, Adrien Gaidon (soon on arxiv)
© SO e Res e e B 2 £ )1ovora
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Rlsk-awareness in Plannlng

Perceptlon / Prediction: always stochastlc
Basis for Safety-critical Decisions in Real-time?
Safe Autonomy requires Risk-Awareness
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Risk-awareness in Planning: Safety

Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for
Safe Crowd-Robot Interaction, H. Nishimura, B. lvanovic, A. Gaidon, M. Pavone, M. Schwager, IROS'20

Environment

i & goal
A
&
A

Probabilistic
Human Motion
Prediction

Model-based
Planning / Control

1 1 N
[ ) [ ] [ ]

Entropic Risk

Rpo(J) 2 élog (Eple™])

p;c—i-l = p}, + Yk {Z/%JZY} s D

* Discrete-Time
« Stochastic

 Arbitrary Distribution

Rp.o(J) ~EplJ] + %VarD(J)

Risk-neutral Risk-sensitive
oc=20 o>0

Control

e Continuous-Time
* Deterministic
* Control-Affine
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Risk-awareness in Planning: Safety

Generative Behavior Prediction Model

Position Control
Measurements Query every 0.4s Return prediction for next 4.8s Command
i é goal
& A Control Scheduler
A Every 0.4s Every 0.02s

Return perturbed control schedule Re-plan every 0.1s

Main Controller

Nominal Search Control Perturbation with RSSAC
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Risk-awareness in Planning: Safety

Time: 0.00 s] Time: 0.00 [s]
*

yim]

X

o = 1.0 (Risk-Sensitive)

Km)

o = 0.0 (Risk-Neutral)
Game-Theoretic Planning for Risk-Aware Interactive Agents, M. Wang, N. Mehr, A. Gaidon, M. Schwager IROS'20

RAT iLQR: A Risk Auto-Tuning Controller to Optimally Account for Stochastic Model Mismatch, Nishimura et al, RA-L/ICRA'21
éa ) TOYOTA
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https://docs.google.com/file/d/1vyH4vtZnyW0qI9AJWX47P9bZXLbg89px/preview

© 2020 Toyota Res

Risk-awareness in Planning: Causality

Decision-making: beyond pure data — Causal Inference

Counterfactuals in sim: find planner bugs and fixes

Behaviorally Diverse Traffic Simulation via Reinforcement Learning, S. Maruyama et al, IROS'20

Discovering Avoidable Planner Failures of Autonomous Vehicles using Counterfactual Analysis in
Behaviorally Diverse Simulation, D. Nishiyama et al, ITSC'20

Random Non-diverse Diverse
Policies Policies Policies

Generated J L
Trajectories
Policy #1 »’—‘

Policy #2

Policy #3 —

Diversity High Low High
Driving Skills Low High High

earch Institute. Public.

Tﬁ_
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= (Overall Diversity)
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Risk-awareness in Planning: Near-Accidents
Imitation in Near-Accidents? Phase Transitions

Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving,
Z. Cao, E. Biyik, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, D. Sadigh, RSS'20

RL to switch between basic IL policies
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Risk-awareness in Planning: Near-Accidents
Imitation in Near-Accidents? Phase Transitions

Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving,
Z. Cao, E. Biyik, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, D. Sadigh, RSS'20

RL to switch between basic IL policies

Less collisions + human-like ERimee



http://www.youtube.com/watch?v=6iEi4PDLQ8w&t=275
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Robot = Complex Sensorimotor Loop

Data Perception Prediction Planning Control

Robustness Randomness Risk

Law of Arrows: In a modular sensorimotor system, the
performance bottlenecks are at the interface between modules.

Work on the Arrows!
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Code & Data:
Blog posts:

Twitter:
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https://www.tri.global/careers/
https://github.com/TRI-ML
https://medium.com/toyotaresearch/self-supervised-learning-in-depth-part-1-of-2-74825baaaa04
https://twitter.com/ToyotaResearch

