

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Presenter: Lance Zhang

08/31/2023

Motivation and Main Problem

It is important to effectively process point cloud data!

LiDAR Sensors

Motivation and Main Problem

However, few works have studied deep learning for point sets and leveraged their **unique characteristics**:

- Irregular data structure (lack of fixed grid)
- Density variability
- Importance of both local & global contexts

Motivation and Main Problem

We need a algorithm that allows:

- 1. Hierarchical feature learning
- 2. Point cloud processing without grid-based representation

Problem Setting

$$\mathcal{X} = (M, d)$$

 $M \subseteq \mathbb{R}^n$: a set of points in *n*-dimensional space

d: Euclidean distance metric

Objective: Learning set functions f that takes the metric space χ as input and produce information of semantic interest (for classification & segmentation)

Related Work: Voxelization

- Can apply 3D CNN to point cloud data
 - Very sparse mesh (most of 3D space is empty)

Prior Work: PointNet

Classification Network

Directly processing point cloud data, permutation invariant

- Does not take into account density variability
- Does not capture both global and **local** features

Proposed Approach

PointNet++ takes a **hierarchical approach** to feature learning by creating "neighborhoods" of points in various resolutions

i.e. Applying PointNet **recursively** on a nested partitioning of the point set

Set abstraction layer:

- 1. Sample centroids (center of neighborhoods)
- 2. Group points (for each neighborhood)
- 3. PointNet layer (feature extraction for that level)

PointNet++: Layers

Sampling Layer

Iterative Farthest Point Sampling (FPS)

 $\{x_{i_1}, x_{i_2}, \dots, x_{i_m}\} \subset \{x_1, x_2, \dots, x_n\}$ $x_{i_j} \rightarrow$ the most distant point from the set $\{x_{i_1}, \dots, x_{i_{j-1}}\}$

Grouping Layer

Select points for each neighborhood centroid through ball queries

• Number of points can vary significantly

PointNet++: Layers

PointNet Layer

Applies a small PointNet to a given set of points for feature extraction

$$f(x_1, x_2, \dots, x_n) = \gamma \left(\max_{i=1,\dots,n} \left\{ h(x_i) \right\} \right)$$

Addressing **non-uniform sampling density**:

- Multi-scale grouping (MSG, left)
- Multi-resolution grouping (MRG, right)
- Random input dropout

 $\theta \sim U[0,p]$ (e.g., p=0.95)

PointNet++: Putting It All Together

Propagation for Segmentation

We need to classify each point to perform segmentation \Rightarrow propagate centroid features to original point set:

Inverse Distance Weighted Interpolation

$$f^{(j)}(x) = \frac{\sum_{i=1}^{k} w_i(x) f_i^{(j)}}{\sum_{i=1}^{k} w_i(x)} \quad \text{where} \quad w_i(x) = \frac{1}{d(x, x_i)^p}, \ j = 1, ..., C$$

Experimental Setup: Datasets

PointNet++ was evaluated on four datasets in various domains:

Experimental Setup: Algorithms

PointNet++

SSG (Single-Scaled Grouping) SSG + DP (with input dropout)

MSG + DP (best but expensive) MRG + DP

Baselines (3D)

Subvolume (volumetric CNN) MVCNN (multi-view CNN) PointNet PointNet (Vanilla)

Baselines (2D, MNIST) MLP LeNet5 Network in Network

Experimental Results

1.60
0.80
0.47
1.30
0.78
0.51

Table 1: MNIST digit classification.

Method	Input	Accuracy (%)
Subvolume [21]	vox	89.2
MVCNN [26]	img	90.1
PointNet (vanilla) [20]	pc	87.2
PointNet [20]	pc	89.2
Ours	pc	90.7
Ours (with normal)	pc	91.9

Table 2: ModelNet40 shape classification.

Experimental Results

ScanNet

- Complex scenes
- Closest to real-world sensor data

Significant improvements over 3DCNN and PointNet, affirming the importance of hierarchical feature learning⁰

Experimental Results

	Metric space	Input feature	Accuracy (%)	
DeepGM [14]	-	Intrinsic features	93.03	
Ours	Euclidean Euclidean Non-Euclidean	XYZ Intrinsic features Intrinsic features	60.18 94.49 96.09	
Table 3: SHREC 15 Non-rigid shape classification.				

SHREC15 models are 2D surfaces embedded in 3D

Learning from:

- Non-Euclidean (geodesic) metric space
- Intrinsic features (WKS, HKS, and multi-scale Gaussian curvature)

Discussion of Results

The PointNet++ architecture effectively learns **multi-scale feature representations** from **point sets** sampled from a metric space.

- The architecture achieved SOTA performance on a variety of datasets
- Ablations also showed the algorithm:
 - Is robust to density variations
 - Benefits from combining features from different scales
 - Can learn structure from different metric spaces/input features

Performance improvements are more significant for complex scenes than 2D data and simple 3D models

Limitations

The MSG (and MRG) layers are expensive in computation and memory

- Local PointNet at every centroid
- Large amounts of centroids at lower levels
- → Accelerating inference by sharing computations in local regions

Lack of geometric awareness

- Considers neighborhoods but not the geometric structure
- → Incorporate such information into the algorithm

Future Work

- Scalability and Efficiency (as mentioned)
- Fine-Grained Geometry: consider geometric features (curvatures, edges, corneers) in addition to the distance metric
- Attention Mechanisms: allow the model to dynamically focus on informative parts of the point cloud, instead of relying on max pooling
- **Dynamic Scenes:** incorporate temporal context, better suited for real-time sensor data

Extended Readings

- Dynamic Graph CNN for Learning on Point Clouds: An alternative approach for processing point clouds using CNNs, representing them through graphs instead of voxelization
- **Point Transformer:** Self-attention layers for point clouds
- Deep Learning for 3D Point Clouds
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation: foundation for PointNet++

Summary

- PointNet++ addresses the challenge of processing 3D point cloud data for tasks such as model classification and scene segmentation
- Point clouds lack the regular grid structure and often have non-uniform density
- Prior work does not account for the **unique properties** of point clouds and fail to capture both local and global structures simultaneously
- By recursively applying PointNet on nested partitionings of the original data, PointNet++ allows for **multi-scale feature extraction**
- The proposed algorithm achieved **SOTA performance** on a variety of datasets, while also being robust to non-uniform density and different metric spaces

Thank you!!