
Dynamic Graph CNN for Learning on PointClouds
(DGCNN)

Yue Wang1, Yongbin Sun1, Ziwei Liu2, Sanjay E. Sarma1 and Michael M. Bronstein3 and Justin M. Solomon1

UTCS CS 395T Robot Learning Fall 2023

Presenter: Yuezhi Yang

1:MIT 2:UCBerkeley 3:ImperialCollegeLondon

ACM Transaction on Graphics, 2019 (Preceding SIGGRAPH 2019)

Motivation
- Point clouds are popular in 3D representation for its
 - Easy acquisition
 - flexible geometric representation
 - Vast application

3D Object Detection Part Segmentation Scene Segmentation

Object Classification Robot Manipulation 3D Object Tracking

Deep 3D Perception on Point Clouds

- How to build model to enable better 3D perception on point cloud?

- Overwhelming success of CNNs for image perception ->
 Can we adopt CNN on point clouds perception?

Is this a good problem?
- Local point cloud patches also contains rich geometric information

What might be potential challenges?
- Image != Point Cloud for irregularity/ lack of topological info

How far has previous methods gone?

Motivation

Background – Regular CNN

Background – Graph CNN

Steps:
1. Construct graph
2. Apply filter
3. Aggregate local features
4. Additional pooling/Repeat operations
5. Predict

Previous work
PointNet (Qi et al. 2017)
Step:
 1. Construct a edge-empty graph with only vertices
 2. Apply filter
 3. No local aggregation
 4. Repeat stack of filters and spatial transform
 5. Global aggregation and Predict

- Pioneer work in direct point cloud processing
- Permutation invariant: global feature will not change if we change the order of the input points
Problem:
- Consider each point independently, No local context for each point -> Only extract global features

PointNet++ (Qi et al. 2017)
Step:
 1. Sample anchor points (Farthest Point Sampling) and find neighbour points
 2. Apply filter
 3. Aggregate local features to anchor points
 4. Pooling layers to only keep anchor points and discard the rest
 5. Repeat 1-4
 6. Predict
Basically apply PointNet++ locally and Hierarchically

Problem:
- Computes pairwise distances using point input Euclidean coordinates
 -> Fix graph structure, inadequate point-wise metric
- explore local features through operator aggregation
 Treat points independently at local scale as use PointNet as local operator

Previous work

Previous work – More
More variant of filter and Aggregation:
PCNN (Atzmon et al. 2018)
 - Filter:
 - Aggregation: where g: gaussian kernal compute pairwise distance in Euclidean

MoNet (Monti et al. 2017)：
 - filter:
 - Aggregation:

Can we design a network that 1. capture local features ?
 2. dynamically update graph structure?
 3. keep permutation invariance?
 - Yes, this paper propose “EdgeConv”

Contributions

- Present a novel operation, EdgeConv, for transforming local points into a graph and
applying convolution on edges to better capture local geometric features

- Show that model can learn to semantically group points by dynamically updating a
graph of relationships from layer to layer

- Demonstrate that EdgeConv can be integrated into multiple existing pipelines for
point cloud processing

- Achieves state-of-the-art performance in point cloud classification, part segmentation
and indoor scene segmentation

Method
Step: （Edge Convolution）
 1. Construct graph using K nearest neighbour (KNN), point-wise distance measured in feature space
 2. Apply filter

 Specifically:

 3. Aggregate via max:
 4. Repeat Step 1-3, Recompute the graph each time repeat (Dynamically update in each layer)
 5. Predict

Global info Local info

Property:
- Extract local info for every points
- Permutation invariant
- Graph constructed by KNN in feature space
- Dynamically update graph each layer
- Analogy to transformer

Learning Parameters

Network Architecture

Converts point cloud into
canonical space using
coordinate differences of
point in K-neighbour

Point Cloud Classification
State-of-the-art performance in classification
- Dataset: ModelNet40, with 12,311 models over 40 categories
- 1024 points are sampled uniformly in the mesh

Ours (Baseline): Static graph computed from input
Ours: Dynamic Graph with K=20
Ours(2048 pts) : Dynamic Graph with 2048 points K=40

Model Complexity

Part Segmentation
State-of-the-art comparable performance in part segmentation
- Dataset: ShapeNet Part, to predict 50 predefined part labels
- 2048 points are sampled uniformly in the mesh
- 16,881 shapes from 16 object categories

Part Segmentation Result Comparison

State-of-the-art performance with high efficiency

Semantic exploration
Supervised on segmentation loss

Indoor Scene Segmentation
Dataset:
Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)
- 3D scan point clouds for 6 indoor areas including 272 rooms

in total
- Each point belongs to one of 13 semantic categories
- 4,096 points are sampled

Summary

- Problem: Point cloud perception with deep networks

- Apply CNN technique to irregular point clouds to extract local information

- By transforming point clouds into graph, convolution can be applied with EdgeConv

- Dynamically update graph structure and choose appropriate filter to achieve SOTA result
on point cloud classification and segmentation

Limitation & Future Direction
- Require pair-wise distance computation between all points-> High GPU memory consumption
 Memory bottleneck when scaling towards large point cloud, DGCNN does not have pooling layer to compress
 points in forward pass
 Need fast data structure (such as Oct-tree) to accelerate point-wise distance computation

- Fix K value KNN may not be enough to tackle point cloud of uneven density

- More experiment in point clouds processing downstream tasks to be explore
 How about 3D object detection? -> Object DGCNN (Wang et al., NeurIPS 2021)

- Determining the parameter K is still a handcraft job, need an algorithm to determine k given point
 cloud density and distribution

Discussion
What is next? on point cloud processing network?
- Explore rotation equivariance/invariance of point cloud
 - Vector Neurons : A General Framework for SO(3)- Equivariant Networks (Deng et al.) ICCV 2021
 - Build upon DGCNN and PointNet

- What is rotation equivariance and invariance?
 - invariance: output is independent of input pose of object
 - equivariance: output change accordingly to input pose
- Why do we need rotation equivariance and invariance?
 - Shape in wild may not come with canonical poses
 - Eliminate the prior where all the shape in dataset(e.g. ShapeNet) are aligned

- Why do we care if we have data augmentation and spatial transformer?
 - Theoretical vs Empirical perspective
 - data vs network perspective
 - 3D SO(3) group are large and augmentation maybe resource consuming

- Can we extend equivariance/ invariant logic towards different property of 3D PCs?
 - Global pose (As Rigid As Possible), scale (ACAP), density

Vector Neurons

Equivariance Network

Feature

Vector Neurons
Features

Linear Layer ReLU in 3DReLU in 2D

- Can we extend equivariance/ invariant logic towards different property?
 - Global pose (As Rigid As Possible), scale (ACAP), density

Resource
- Project homepage: https://liuziwei7.github.io/projects/DGCNN

- Code
 - Official Tensorflow & Pytorch Implementation: https://github.com/WangYueFt/dgcnn

 - Pytorch Geometric Package:
https://pytorchgeometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/edge_conv.html

 - MXNet DGL (Deep Graph Library)
 https://docs.dgl.ai/generated/dgl.nn.mxnet.conv.EdgeConv.html

https://github.com/WangYueFt/dgcnn
https://pytorch/

