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Motivation

- Point clouds are popular in 3D representation for its
- Easy acquisition
- flexible geometric representation

- Vast application . .
Deep 3D Perception on Point Clouds

3D Object Detection Scene Segmentation
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" Object Classification ~ Robot Manipulation 3D Object Tracking
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Motivation

- How to build model to enable better 3D perception on point cloud?

- Overwhelming success of CNNs for image perception ->
Can we adopt CNN on point clouds perception?

Is this a good problem?
- Local point cloud patches also contains rich geometric information

What might be potential challenges?
- Image != Point Cloud for irregularity/ lack of topological info

How far has previous methods gone?
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Background — Regular CNN
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Background — Graph CNN

E / label
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information
Steps: Graph Gﬁ:? Y Gcf*"v
A— I b (< |
1. Construct graph ¢y . > h Readout
2. Apply filter hg(x;,x;) LA 28 TN Y
’ , - h is j N\ \.':,‘3‘» A\ ‘ ;

3. Aggregate local features j:(iga‘} o) vl D N R T g
4. Additional pooling/Repeat operations A+ ‘
5. Predict ) e <
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Previous work

PointNet (Qi et al. 2017)
Step:
1. Construct a edge-empty graph with only vertices
2. Apply filter h@(xi, Xj) = h@(xi)‘
3. No local aggregation
4. Repeat stack of filters and spatial transform
5. Global aggregation max he(x;) Predict

- Pioneer work in direct point cloud processing

- Permutation invariant: global feature will not change if we change the order of the input points

Problem:

- Consider each point independently, No local context for each point -> Only extract global features
MLPs max pool

- Classification Network
................ mputm]p(64,64)featurem[p(64,128,1024)maxmlp
é 1 % ) transform 3 I . transform . 5 I pool 074 (512,256,k)
E} " g maE shared E ] ] E shared nx1024 F
k= g, : | | I glo a’a”eature K
..................... ... outputscores
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Previous work

PointNet++ (Qi et al. 2017)
Step:

1. Sample anchor points (Farthest Point Sampling) and find neighbour points

2. Apply filter  hg(x;,x;j) = hg(x;).
3. Aggregate local teatures to anchor points
4. Pooling layers to only keep anchor points and discard the rest

5. Repeat 1-4
6. Predict

Basically apply PointNet++ locally and Hierarchically

Problem:

- Computes pairwise distances using point input Euclidean coordinates
-> Fix graph structure, inadequate point-wise metric
- explore local features through operator aggregation
Treat points independently at local scale as use PointNet as local operator

max heg(x;)
ji(irj)€E

Hierarchical point set feature learning

re

sampling & pointnet sampling &
grouping grouping

. AN J
Y Y

set abstraction set abstraction

pointnet
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Previous work — More

More variant of filter and Aggregation:
PCNN (Atzmon et al. 2018)

- Filter:  hg(xi,%x;) = hg(xj) = (Om - X;)
- Aggregation: , ‘
xim = ) (ho(x;))9(u(xi, %))
jev
MoNet (Monti et al. 2017):
- filter: h@(xi,x]-) = h@(xj) =0 - Xj)

- Aggregation: x{m — Z'gm . (Xj ® gwn(u(xi,Xj)))
JjeV

g: gaussian kernal compute pairwise distance in Euclidean

Can we design a network that 1. capture local features ?
2. dynamically update graph structure?
3. keep permutation invariance?
- Yes, this paper propose “EdgeConv”
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Contributions

- Present a novel operation, EdgeCony, for transforming local points into a graph and
applying convolution on edges to better capture local geometric features

- Show that model can learn to semantically group points by dynamically updating a
graph of relationships from layer to layer

- Demonstrate that EdgeConv can be integrated into multiple existing pipelines for
point cloud processing

- Achieves state-of-the-art performance in point cloud classification, part segmentation
and indoor scene segmentation
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Method

Step: (Edge Convolution)
1. Construct graph using K nearest neighbour (KNN), point-wise distance measured in feature space

Global info Local info
Specifically:  ho(xi.x;) =¢/;,, = ReLU(Om - (Xj — Xi) + Py, * Xi).
\ /V

Learning Parameters

/
X = max e

3. Aggregate viamax: ™ (i j)es U™

4. Repeat Step 1-3, Recompute the graph each time repeat (Dynamically update in each layer)

5. Predict

o e @
Property: i2 < @_e. i,
1 y i Ji :

- Extract local info for every points \ / L(LCO"» - : /

€.
g Uil
A

X.
Ji1

Permutation invariant / \. /
X

Graph constructed by KNN in feature space €.
Dynamically update graph each layer Ji4 é Viia o
Analogy to transformer X X; .
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Network Architecture
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Point Cloud Classification

State-of-the-art performance in classification
- Dataset: ModelNet40, with 12,311 models over 40 categories
- 1024 points are sampled uniformly in the mesh

Ours (Baseline): Static graph computed from input

MEAN OVERALL
CrAss ACCURACY ACCURACY
3DSHAPENETS [WU ET AL. 2015] 77.3 84.7
VOXNET [MATURANA AND SCHERER 2015] 83.0 85.9
SuBVOLUME [Q1 ET AL. 2016] 86.0 89.2
VRN (SINGLE VIEW) [BROCK ET AL. 2016] 88.98 -
VRN (MULTIPLE VIEWS) [BROCK ET AL. 2016] 91.33 -
ECC [SimoNOVSKY AND KomoODAKIS 2017] 83.2 87.4
PoIiNTNET [Q1 ET AL. 2017B] 86.0 89.2
POoINTNET++ [QI ET AL. 2017C] - 90.7
Kp-NET [KLOKOV AND LEMPITSKY 2017] - 90.6
PoINTCNN [L1 ET AL. 2018A] 88.1 92.2
PCNN [ATzMON ET AL. 2018] - 92.3
OURS (BASELINE) 88.9 91.7
Ours 90.2 92.9
OURs (2048 POINTS) 90.7 93.5

Ours: Dynamic Graph with K=20
Ours(2048 pts) : Dynamic Graph with 2048 points K=40
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Model Complexity

MopDEL sizE(MB) TiMEe(MS) ACCURACY(%)

POINTNET (BASELINE) [Q1I ET AL. 2017B] 9.4 6.8 87.1
POINTNET [Q1 ET AL. 2017B] 40 16.6 89.2
POINTNET++ [QI ET AL. 2017C] 12 163.2 90.7
PCNN [ATZMON ET AL. 2018] 94 117.0 92.3
OURS (BASELINE) 11 19.7 91.7
OUuRrs 21 27.2 92.9

Table 3. Complexity, forward time, and accuracy of different models
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Part Segmentation

State-of-the-art comparable performance in part segmentation
- Dataset: ShapeNet Part, to predict 50 predefined part labels
- 2048 points are sampled uniformly in the mesh

- 16,881 shapes from 16 object categories

MEAN | AREO BAG CAP CAR CHAIR EAR GUITAR KNIFE LAMP LAPTOP MOTOR MUG PISTOL ROCKET SKATE TABLE
PHONE BOARD
# SHAPES | | 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
POINTNET 83.7 83.4 78.7 825 749 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
POINTNET++ 85.1 82.4 79.0 87.7 773 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Kp-NET 82.3 80.1 74.6 743 703 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
LocALFEATURENET 84.3 86.1 73.0 549 774 88.8 55.0 90.6 86.5 75.2 96.1 57.3 91.7 83.1 53.9 72.5 83.8
PCNN 85.1 82.4 80.1 855 795 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PoinTCNN 86.1 84.1 86.45 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
Ours | 85.2 | 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

Table 6. Part segmentation results on ShapeNet part dataset. Metric is mloU(%) on points.
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Part Segmentation Result Comparison

State-of-the-art performance with high efficiency

PointNet Ours Ground truth
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Semantic exploration

Supervised on segmentation loss
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Indoor Scene Segmentation

Dataset:

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)

- 3D scan point clouds for 6 indoor areas including 272 rooms
in total

- Each point belongs to one of 13 semantic categories

- 4,096 points are sampled

MEeAN OVERALL
IoU ACCURACY
PoINTNET (BASELINE) [QI ET AL. 20178B] 20.1 53.2
PoINTNET [Q1 ET AL. 2017B] 47.6 78.5
MS + CU(2) [ENGELMANN ET AL. 2017 47.8 79.2
G + RCU [ENGELMANN ET AL. 2017] 49.7 81.1
PoINTCNN [L1 ET AL. 2018A] 65.39 -
Ours 56.1 84.1

Table 7. 3D semantic segmentation results on S3DIS. MS+CU for multi-scale

block features with consolidation units; G+RCU for the grid-blocks with
recurrent consolidation Units.

PointNet Ours Ground truth Real color

Fig. 10. Semantic segmentation results. From left to right: PointNet, ours, ground truth and point cloud with original color. Notice our model outputs smoother
segmentation results, for example, wall (cyan) in top two rows, chairs (red) and columns (magenta) in bottom two rows.
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summary

- Problem: Point cloud perception with deep networks
- Apply CNN technique to irregular point clouds to extract local information
- By transforming point clouds into graph, convolution can be applied with EdgeConv

- Dynamically update graph structure and choose appropriate filter to achieve SOTA result
on point cloud classification and segmentation
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Limitation & Future Direction

- Require pair-wise distance computation between all points-> High GPU memory consumption
Memory bottleneck when scaling towards large point cloud, DGCNN does not have pooling layer to compress

points in forward pass
Need fast data structure (such as Oct-tree) to accelerate point-wise distance computation

- Fix K value KNN may not be enough to tackle point cloud of uneven density

- More experiment in point clouds processing downstream tasks to be explore
How about 3D object detection? -> Object DGCNN (Wang et al., NeurlPS 2021)

- Determining the parameter K is still a handcraft job, need an algorithm to determine k given point
cloud density and distribution

NUMBER OF NEAREST NEIGHBORS (K) MEAN OVERALL
Crass AccurRAcY(%) AcCURACY(%)

5 88.0 90.5
10 88.9 91.4
20 90.2 92.9
40 89.4 92.4

Table 5. Results of our model with different numbers of nearest neighbors.
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Discussion

What is next? on point cloud processing network?
- Explore rotation equivariance/invariance of point cloud
- Vector Neurons : A General Framework for SO(3)- Equivariant Networks (Deng et al.) ICCV 2021

Vector Neurons

- Build upon DGCNN and PointNet -
R € SO(3) A |
- What is rotation equivariance and invariance? f(VR' 9) _ f(V 9)
- invariance: output is independent of input pose of object ’ ’ so0) s0)
rotation R

- equivariance: output change accordingly to input pose f(VR; 9) — f(V; 9)R rotation R
- Why do we need rotation equivariance and invariance?

- Shape in wild may not come with canonical poses

- Eliminate the prior where all the shape in dataset(e.g. ShapeNet) are aligned

- Why do we care if we have data augmentation and spatial transformer? classification segmentation
- Theoretical vs Empirical perspective y 4 ,
. sl s il g
- data vs network perspective I T D Y
- 3D SO(3) group are large and augmentation maybe resource consuming airplane
- Can we extend equivariance/ invariant logic towards different property of 3D PCs?

- Global pose (As Rigid As Possible), scale (ACAP), density invariant equivariant
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Equivariance Network Features

Vector Neurons Classical:

N x C x 1 feature

VN:

I
| i
(classical) |’||
vector neurons J
scalar neurons N x C x 3 feature

Feature
Linear Layer RelU in 2D ReLU in 3D
Linear operator fi;,( -; W) with learnable weights W € R¢ *¢:
, 10)4 direction k
V' = fin(V; W) = WV € RO *3 - feature q

Equivariance to rotation R € SO(3): 76)=0 y

fin(VR; W) =WVR= fiin(V;W)R=V'R

- Can we extend equivariance/ invariant logic towards different property?
- Global pose (As Rigid As Possible), scale (ACAP), density
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Resource

- Project homepage: https://liuziwei7.github.io/projects/DGCNN

- Code
- Official Tensorflow & Pytorch Implementation: https://github.com/WangYueFt/dgcnn

- Pytorch Geometric Package:
https://pytorchgeometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/edge conv.html

- MXNet DGL (Deep Graph Library)
https://docs.dgl.ai/generated/dgl.nn.mxnet.conv.EdgeConv.html
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