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What is 6D Pose?
3D translation (x, y, x) and rotation (row, pitch, yaw) which refers to the location and 
orientation of the object in space.
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Significance of 6D Pose Estimation
Important task because:
• robot manipulation (e.g. bin 

picking)

• self-driving cars

• augmented reality

• human robot interaction (e.g. 

learning from demonstration).
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Why is 6D Pose Estimation Challenging

● Complexity of the environment: clutter, occlusion.

● Variety of objects with different textures and shapes.

● Change in object apparencies in images due to lighting and other 
conditions. 

● Sensor noise
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Previous Work

● Handcrafted feature extraction such as Brachmann et al [1]

○ Cons: Poor performance with heavy occlusion and lighting variation

● Deep network-based pose estimation such as PoseCNN and MCN

○ Cons: require extensive post processing refinement

● Frustrum PointNet and PointFusion improve on deep network methods that perform well in real-time.

○ Cons: Perform well in driving scenes, but limited under heavy occlusion
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Motivation
● Create an end-to-end deep network to predict 6D pose estimation 

of known objects in space using RGB-D images.

● Achieve robustness for complex tasks including occlusion. 

● Achieve optimal speed for real time applications.

● Utilize both color and depth information in fusion to extract pixel-
wise features to estimate the pose.

● Addition of iterative pose refinement method that can run in real 
time
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Architecture Overview

1. Semantic segmentation

2. Dense feature 

extraction

3. Pixel-wise dense fusion

4. 6D object pose 

estimation

5. Iterative refinement 
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Semantic Segmentation
● Encoder-decoder architecture 
● Takes an image as input
● Creates an N+1 channeled semantic segmentation map
● In each channel, active pixels refer to one objects in the set of N possible objects
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Dense Feature Extraction
• Color and depth information are processed separately to create feature embeddings that include the 

intrinsic structure of each data.

• Dense 3D point cloud feature embedding

• Converts segmented depth pixels into a 3D point cloud using camera intrinsics

• PointNet-like model to extract geometric features 

• Dense color image feature embedding

• CNN-based encoder-decoder architecture mapping an image of size H x W x 3 into H x W x d_rgb embedding space

• Each pixel of the embedding is a d_rgb dimensional vector representing appearance information of the image at the specific location
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6D Object Pose Estimation

Minimize the pose estimation loss for each dense-pixel prediction

Loss for asymmetric objects:

𝑥! Is the 𝑗!"# point in the M randomly selected 3D points from the object. 

𝑝 = [𝑅|𝑡]   →  ground truth pose 

*𝑝! = [ +𝑅!|*𝑡!]  →  predicted pose corresponding to the 𝑖"# dense-pixel.
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6D Object Pose Estimation

Minimize the pose estimation loss for each dense-pixel prediction

Loss for symmetric objects:

𝑥! Is the 𝑗!"# point in the M randomly selected 3D points from the object. 

𝑝 = [𝑅|𝑡]   →  ground truth pose 

*𝑝! = [ +𝑅!|*𝑡!]  →  predicted pose corresponding to the 𝑖"# dense-pixel.
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6D Object Pose Estimation

Minimizing the sum of all dense-pixel losses:

The network balances the confidence scores with each pose prediction. Hence, weighing the confidence 

score with the loss and adding a confidence regularization formula.

N = the number of randomly selected dense-pixels features from the P elements of the segment

 𝜔	= balancing hyperparameter
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Iterative Refinement
Neural network based iterative refinement to improve pose 

estimation

● Step 1: Use the previous predicted pose to transform 

the input point cloud into its canonical frame.

● Step 2: Feed the transformed point cloud back into the 

network and predict a residual pose

● Step 3: Iterate to obtain finer pose estimations
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Iterative Refinement

● After K iterations the final pose estimation is obtained as 

a concatenation of per iteration estimates:
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YCB-Video Dataset
• 21 objects of varying shapes and texture 

levels under different occlusion conditions

• 92 RGB-D videos where each video shows a 
subset of the 21 objects in different indoor 
environments

• The videos are labeled with 6d poses and 
segmentation masks

• Divided into 80 videos for training and 12 for 
testing
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LineMOD Dataset
• 13 low-textured objects of the 

existing 15 objects were used

• Training dataset includes around 
200 instances for each object and 
the test dataset includes around 
1000 instances
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Experiments
Metrics used:
• Average Closest Point Distance (ADD-S): The mean distance from each 3d point transformed 

by [ +𝑅!|*𝑡!] to its closest neighbor on the target model transformed by 𝑅 𝑡 .

• Average Distance of Model Points (ADD): The mean distance from each 3d point transformed 
by [ +𝑅!|*𝑡!] to the same point on the target model.

• AUC: The area under the ADD-S curve 

Image embedding network: Resnet-18 encoder + 4 up-sampling layers (decoder)
PointNet Architecture: Multilayer perceptron (MLP) + average-pooling
Iterative pose refinement: 4 fully connected layers outputting pose residual. 

• All experiments use 2 refinement iterations. 
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Experiments using YCB-Video
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Experiments using YCB-Video
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Experiments using LineMOD
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Experiments using LineMOD
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Model Performance
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Robotics Grasping Experiment

• 5 YCB objects were placed on the table

• 4 different locations 

• 3 random orientations with partial occlusion

• Robot was commanded to grasp them using the estimated pose

• Robot made 12 attempts for each object (60 total attempts)

• 73% success rate with banana being the most difficult case

• Banana looked different form dataset?

• Architecture is robust for manipulation with occlusion
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Extended Readings

PoseCNN:
Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estima- tion in cluttered scenes,” ArXiv preprint 
arXiv:1711.00199, 2017.

MCN:
C. Li, J. Bai, and G. D. Hager, “A unified framework for multi-view multi-class object pose estimation,” ArXiv preprint arXiv:1803.08103, 2018.

PointFusion:
D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sen- sor fusion for 3d bounding box estimation,” ArXiv preprint arXiv:1711.10871, 2017.

ICP:
P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239–256, 1992. 
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Thank you for listening!
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