

Tracking Everything Everywhere All at Once

Presenter: Christopher Lawson

9/19

Problem - Motion Estimation

What is Motion Estimation?

 The creation of velocity trajectories made on an object to predict where it will be after X amount of time has passed.

Different Goals?

- Dense Pixel Trajectories
- Long-range Pixel trajectories

Why is Motion Estimation Important

Incredibly important to solve tasks such as:

- How an object will behave
- Where an object will appear

These are important when interacting with the world

Challenges

- Maintaining accurate tracking across long sequences
- Tracking points through occlusions
- Maintaining coherence in space and time

Problem Proposal

A model that:

- Produces globally consistent full-length motion trajectories for all points in a video
- Can track points through occlusions
- Can tackle in-the-wild videos with any combination of camera and scene motion.

Related Work

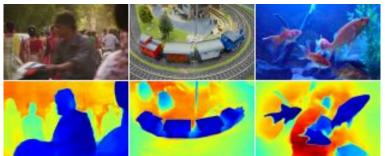
- Balanced trade offs for different results
 - i.e. precision for long-range predictability
- Overarching issue with tracking *all* pixels.

Related Work

- Video-based Motion Optimization
 - Produces a set of semi dense long-range trajectories from optical flow fields
 - Does not allow tracking through occlusions. Reappearing particles are treated as new entities
- Neural Video Representations
 - Uses coordinate-based multi-layer perceptrons to focus on problems such as novel view synthesis and video decomposition.
 - Can create mapping between frames but is expensive and unreliable.
 - Require known camera poses and thus predicted motion is often erroneous.

Approach - Overview

- Represents the video in a canonical 3D volume G
- Define a network *F* that maps each coordinate in *G* to a density *σ* and color *c*
- Density
 - Gives information about canonical space
 - Allows to track surfaces (even through occlusion)
- Color
 - Photometric Loss
 - Perceived Depth

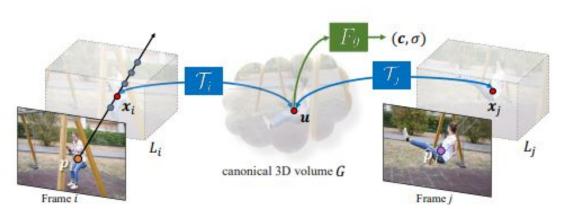


Approach - 3D Bijections

Define bijective mapping *T* maps 3D points *x* from each coordinate in frame *L* to a canonical 3d coordinate frame called *u*

 $oldsymbol{x}_j = \mathcal{T}_{oldsymbol{j}}^{-1} \circ \mathcal{T}_{oldsymbol{i}}(oldsymbol{x}_i).$

• Can train these mappings as Invertible Neural Networks $\mathcal{T}_{i}(\cdot) = M_{\theta}(\cdot; \psi_{i})$



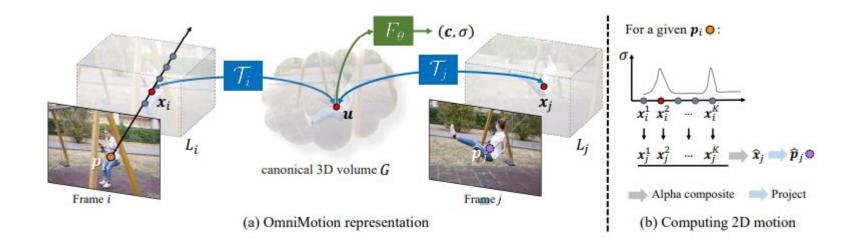
Approach - Frame-to-Frame Motion

k-1

- Now to describe 2D motion for a query pixel **p** in frame **i**
- Lift the query pixel to 3D by sampling points on a ray (which contains $\{x_i^k\}$ points), then map the 3D points to a target frame.

- Next obtain colors and densities through: $(\sigma_k, c_k) = F_{\theta}(M_{\theta}(x_i^k; \psi_i))$
- Lastly aggregate points at the target frame through (method taken from NeRF): $\hat{x}_j = \sum_{k=1}^{K} T_k \alpha_k x_j^k$, where $T_k = \prod_{k=1}^{k-1} (1 - \alpha_l)$

Approach - All together



Optimization

- Model works but now needs to train and learn
- Broken into 3 steps

Collect Input Motion Data

Apply Loss

Supervision through Hard Mining

Collecting Input Motion Data

- Done so through using different methods to compute pairwise correspondence
 - RAFT and TAP-Net
- Next compute all pairwise optical flows
- Apply cycle consistency and appearance consistency to filter out spurious correspondence.
- Helps reduce noise but still need more methods

Applying Loss function

• Trying to minimize predicted flow

• Minimize the photometric loss

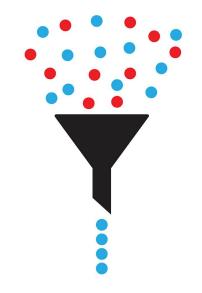
- Minimize 3D acceleration
 between points in frame i+1 and
 i-1
- Total loss is the summation of all 3 losses

$$egin{aligned} \mathcal{L}_{ ext{flo}} &= \sum_{oldsymbol{f}_{i
ightarrow j} \in \Omega_{f}} || oldsymbol{\hat{f}}_{i
ightarrow j} - oldsymbol{f}_{i
ightarrow j} ||_{1} \ \mathcal{L}_{ ext{pho}} &= \sum_{(i,oldsymbol{p}) \in \Omega_{p}} || oldsymbol{\hat{C}}_{i}(oldsymbol{p}) - oldsymbol{C}_{i}(oldsymbol{p}) ||_{2}^{2} \ \mathcal{L}_{ ext{reg}} &= \sum_{(i,oldsymbol{x}) \in \Omega_{x}} || oldsymbol{x}_{i+1} + oldsymbol{x}_{i-1} - 2oldsymbol{x}_{i} ||_{1} \ \mathcal{L} &= \mathcal{L}_{ ext{flo}} + \lambda_{ ext{pho}} \mathcal{L}_{ ext{pho}} + \lambda_{ ext{reg}} \mathcal{L}_{ ext{reg}} \end{aligned}$$

Supervision via Hard Mining

- Lots of data points through pairwise flow, some that is not important/rigid
 - Background pixels remain relatively constant across frames
- Need a way to filter to more important data

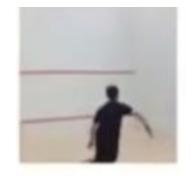
• Calculating Euclidean error map to guide the sampling process during optimization.



Experimental Setup

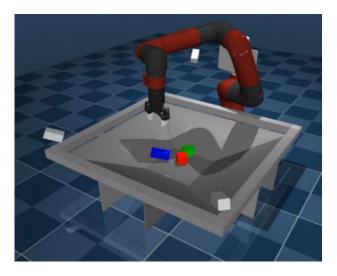
Datasets were taking from TAP-Vid

DAVIS 30 videos 34 - 104 frames per video 21.7 point track annotations



Kinetics

1,189 videos 250 frames per video 26.3 point track annotations



RGB-Stacking 50 videos 250 frames per video 30 point track annotations

Experimental work

Four Main Metrics Used:

- $\bullet < \delta^x_{\mathrm{avg}}$
 - Average position accuracy of visible points across 1, 2, 4, 8 and 16 pixels
- Temporal Coherence (TC)
 - Temporal coherence of tracks by measuring L2 Norm between acceleration of ground-truth tracks and predicted tracks

- Occlusion Accuracy (OA)
 - Accuracy of visibility/occlusion at each frame
- Average Jaccard (AJ)
 - Evaluates occlusion and position
 accuracy on same thresholds as above.

Experimental work

Baselines

- RAFT
 - 2-frame optical flow method to generate multi-frame trajectories.
- PIP
 - Method for estimating multi-frame point trajectories that handle occlusions
 - Set to use temporal window of 8 frames
- Flow Walk
 - A multi-scale contrastive random walk to learn space-time correspondences

- TAP-Net
 - Uses cost volume to predict the location of a query point in a target frame
- Deformable Sprites
 - A layer based video decomposition method. Similar to the work at hand, but does not directly produce frame-to-frame correspondence.

Experimental Results - Qualitative

Experimental Results - Quantitative

Method	Kinetics				DAVIS				RGB-Stacking			
	$AJ\uparrow$	$< \delta^x_{\rm avg} \uparrow$	OA ↑	$TC\downarrow$	AJ ↑	$< \delta^x_{\rm avg} \uparrow$	OA ↑	$\mathbf{TC}\downarrow$	AJ ↑	$< \delta^x_{\rm avg} \uparrow$	OA ↑	TC ↓
RAFT-C [62]	31.7	51.7	84.3	0.82	30.7	46.6	80.2	0.93	42.0	56.4	91.5	0.18
RAFT-D [62]	50.6	66.9	85.5	3.00	34.1	48.9	76.1	9.83	72.1	85.1	92.1	1.04
TAP-Net [14]	48.5	61.7	86.6	6.65	38.4	53.4	81.4	10.82	61.3	73.7	91.5	1.52
PIPs [21]	39.1	55.3	82.9	1.30	39.9	56.0	81.3	1.78	37.3	50.6	89.7	0.84
Flow-Walk-C [5]	40.9	55.5	84.5	0.77	35.2	51.4	80.6	0.90	41.3	55.7	92.2	0.13
Flow-Walk-D [5]	46.9	65.9	81.8	3.04	24.4	40.9	76.5	10.41	66.3	82.7	91.2	0.47
Deformable-Sprites [74]	25.6	39.5	71.4	1.70	20.6	32.9	69.7	2.07	45.0	58.3	84.0	0.99
Ours (TAP-Net)	53.8	68.3	88.8	0.77	50.9	66.7	85.7	0.86	73.4	84.1	92.2	0.11
Ours (RAFT)	55.1	69.6	89.6	0.76	51.7	67.5	85.3	0.74	77.5	87.0	93.5	0.13

Ablation Study

- 3 different ablation tests:
- No invertible
 - Replaces Invertible mapping network with a separate forward and backward mapping network between frames (without bijections)
- No Photometric
 - Omits the photometric loss from loss function
- Uniform sampling
 - Replaces hard-mining sampling strategy with uniform sampling strategy

Method	$\mathbf{TC}\downarrow$	$<\delta^x_{\mathrm{avg}}$
No invertible	0.97	21.4
No photometric	0.83	58.3
Uniform sampling	0.88	61.8
Full	0.74	67.5
Method	AJ ↑	OA ↑
No invertible	12.5	76.5
No photometric	42.3	84.1
Uniform sampling	47.8	83.6
	51.7	85.3

Discussion

• Where do we set the trade off between having incredibly accurate systems and having incredibly high computation and training costs?

• How can we develop more memory sparing methods for object tracking once we are able to expand these models to longer and longer videos?

• How long can an object remain occluded before the model should forget about it? Or should it even be forgotten at all?

Limitation

- Rapid and highly non-rigid motion
- Thin Structures
 - Fail to provide enough reliable correspondences
- Caught in local minima
 - Due to the highly non-convex nature of the data
- Computationally expensive
 - Pairwise flows which scale quadratically

Future Work

- More efficient pairwise matching
- Better optimization process
 - NeRF -> Block NeRF
 - Neural Graphics Primitives

Further Readings

- Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point trajectories. Int. J. of Computer Vision, 80:72–91, 2008
- Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens Continente, Kucas Smaira, Yusuf Aytar, Joao Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a video. In NeurIPS Datasets Track, 2022
- Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106, 2021

Summary

- **Problem:** Created a new test-time optimized method for motion estimation
- Limitations: Very expensive and not very good at fine tracking
- **Strengths:** Deals the best with occlusion than other methods

- OmniMotion can estimate complete and globally consistent motion for an entire video.
- Does so by introducing a quasi-3D canonical volume and a per-frame local bijection to produce accurate and smooth long-range tracking through occlusions.

Thank you!