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Main Problem

e Sequence Prediction Problems
o Perform sequence of actions when given a sequence of observations
o Future observations affected by previous actions
o Dependence on input
e Typical Imitation learning approach violates i.i.d assumption made in
statistical learning problems
o Independent and Identical random variables

o Poor Performance
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Motivation

e Seqguence prediction problems relevant in robotics
e Autonomous systems must be able to take action and adapt to the

environment affected by their actions

e Stationary Policy - same policy for each timestep

e No-regret algorithm: produces a sequence of policies
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Problem Setting

7ATsup — aI'g min ‘Eswdw* [6(37 7-‘-)]
well

£: the observed surrogate loss function
=> expected 0-1 loss of 7 with respect to =z~ in state s,
or a squared/hinge loss of & with respect to z* in s

dr = 7 Zle d% average distribution of states
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Problem Setting

A . ° 41
Tsup = argmin By g , [€(s, )]
well
e Hard to know true cost C(s,a)
e Upper bound J(xr) (total expected cost of executing policy for T-steps) with

surrogate loss function
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Limitations of Prior Work - Ross and Bagnell, 2010

Forward training algorithm - non-stationary policy trained to mimic expert on the

distribution resulting from all previous iterations

Initialize 79, ..., ™% to query and execute 7*.

fori =1to7 do .
Sample T'-step trajectories by following w1,
Get dataset D = {(s;, 7*(s;))} of states, actions taken
by expert at step 1.

Train classifier 7} = argmin_ i Esop(ex(5)).
; i—1 . .
m;=m; forallj #1
end for
T T

Return 7i ,..., 77

Algorithm 3.1: Forward Training Algorithm.
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Limitations of Prior Work - Ross and Bagnell, 2010

Forward training algorithm
e Non-stationary policy: different policy for each time step in sequence
e Impractical when T is large, cannot be stopped until all T iterations are
complete
e Number of mistakes grows linearly with T

e Not ideal for most real-world applications

CS391R: Robot Learning (Fall 2023) 7




Limitations of Prior Work - Ross and Bagnell, 2010

SMILe (Stochastic Mixing Iterative Learning):

Trained to mimic the expert under the distribution of the previous iteration

Initialize 7° «— 7* to query and execute expert.

fori =1to N do
Execute 71 to get D = {(s, 7*(s))}.
Train classifier 7** = argmin, c;; Eswp(ex(s))-
m=1-a)t* +a) ;i (1—a) .

end for . N

. e — 1_ *
Remove expert queries: 7% = = 1_((1_‘;))]\,77
Return 7V

Algorithm 4.1: The SMILe Algorithm.
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Limitations of Prior Work - Ross and Bagnell, 2010

SMiILe - Stochastic Mixing lterative Learning
e Stationary stochastic policy (a finite mixture of policies)
e Alleviates problems presented by the forward training algorithm
e Some policies in the mixture are worse than others
e Learned controller may be unstable

e Guarantees near linear regret in T and €
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Algorithm

DAGGER (Dataset Aggregation) - Stationary deterministic policy
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Initialize D < 0.

Initialize 71 to any policy in II.

fori =1to N do
Let m; = ;7" + (]. — Bz)ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D |JD;.
Train classifier 7,11 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.




DAGGER Algorithm

Initialize D « 0.

Initialize 7; to any policy in IL.

for: =1to N do
Let m; = B;m* + (1 — ﬂl)ﬁ'z
Sample 7'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D |JD;.
Train classifier 7;+1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.
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First iteration uses expert’s policy
to gather trajectories D and trains
the next policy that best mimics
the expert

Next iteration, the policy collects

more trajectories and adds it to D




DAGGER Algorithm

e Building up set of inputs that the learned policy might encounter based on
previous iterations

e Follow-The-Leader: At iteration n, we pick best policy 7 n

T = Bim™ + (1 — B;)7;.
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DAGGER Algorithm

T = B + (1 — B;)7;.

e Use modified policy to better leverage the presence of the
expert
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DAGGER Algorithm

Theorem 3.1. For DAGGER, if N is O(T) there exists a
policy m € w1.n s.t. Egug. [0(s,7)] < eny +O(1/T)

Theorem 3.2. For DAGGER, if N is O(uT) there exists a
policy ™ € 7t1.y s.t. J(71) < J(7*) + uTeny + O(1).

e Guarantees near linear total cost if infinite samples are taken

EN = Milye % Z,fil Es~d,, [€(s,m)] : True loss of the best policy
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DAGGER Algorithm

Theorem 3.3. For DAGGER, if N is O(T?log(1/4)) and
m is O(1) then with probability at least 1 — ¢ there exists a
policy € 7.y s.t. Egog. [£(s,7)] < ény +O(1/T)

Theorem 3.4. For DAGGER, if N is O(u?T?log(1/6))
and m is O(1) then with probability at least 1 — ¢ there
exists apolicy ® € .y s.t. J(71) < J(n*)+uTen+0O(1).

e Tighter bounds can be achieved using the strong convexity of the loss function
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Theoretical Analysis

e Reduction of imitation learning to no-regret online learning
e Online learning produces a policy 7Tn that induces a loss £n, (7Tn)
e No-regret algorithm produces a sequence of policies such that the average

regret with respect to the best policy goes to 0 as N goes to infinity:

1 N
N 2t a%%}—D
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Theoretical Analysis

e Uses no-regret property of the underlying Follow-The-Leader algorithm on
strongly convex losses (Kakade and Tewari, 2009)

e Guarantees good performance under its own distribution
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Theoretical Analysis

Lemma 4.1.

|dx, — di |1 < 2T8;.

Theorem 4.1. For DAGGER, there exists a policy © €
T1.N S.IL IESNd*[e(S,‘IAr)] < €v + IN + 2—6}3“[715 +
x: Zf;ns 1 Bi], for Y the average regret of 1.

Theorem 4.2. For DAGGER, with probability at least 1 -9,
there exists a policy 7« € 7r1.n s.t. Egua, [€(s,7)] < én +

N [2log(1/8
IN + g}"\}“[nﬁ + TZi:ng-i—l Bi] + £max _T%(K'L)"for
vnN the average regret of 1. .
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=> Bounding the total variation
distance between the distribution of
states encountered

=> Guaranteed to find a policy that
achieves e surrogate loss under its
own distribution in the limit (we can
bound policy with the loss of best

policy)

=> True loss under on finite sample
of trajectories




Experimental Setup: Super Tux Kart

Figure 1: Image from Super Tux Kart’s Star Track.
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Experimental Setup: Super Tux Kart

e Human expert used for demonstrations

e Linear controller as base learner

e Average falls per lap

e 1 lap of training per iteration (1000 data points) and run SMILe and Dagger

for 20 iterations
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Experimental Results: Super Tux Kart

45
l l ' e Baseline supervised approach does not
g ' ' improve as more data is collected as
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%2-5 e DAGGER never falls of after 15
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Figure 2: Average falls/lap as a function of training data.
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Experimental Setup: Super Mario Bros
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Figure 3: Captured image from Super Mario Bros.
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Experimental Setup: Super Mario Bros

e Expert: Near-optimal planning algorithm with full access to game state, can
simulate consequences of actions exactly

e 4 independent linear SVM as the base learner (left, right, up, speed)

e Average distance travelled before dying, running out of time, or completing
the stage

e 5000 data points per iteration (each stage is about 150 data points if run to
completion) and run the methods for 20 iterations for each approach

e Tested p values in ,Bz — pi—l
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Experimental Results: Super Mario Bros
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Figure 4: Average distance/stage as a function of data.
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Experimental Setup: Handwriting Recognition

e Dataset containing approximately 6600 words, total of over 52,000 characters

e Predicts character in a word from left to right, using previously predicted
character and a linear SVM

e Baselines: SMILe, SEARN, non-structured approach, and supervised training

approach
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Experimental Results: Handwriting Recognition
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Figure 5: Character accuracy as a function of iteration.
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DAGGER achieves 85.5% accuracy
Supervised approach performed better
than the no-structure approach (83.6%
vs 82.2%)
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Discussion of Results

e No-regret methods can provide a learning reduction with strong performance
guarantees in imitation learning and structure prediction

e Super Tux Kart shows how stochasticity of SMILe leads to less smooth/bad
actions

e Super Mario Bros shows how choosing the right balance between expert and
nonexpert trajectories is important in situations where it learns to unstuck
Mario

e DAGGER performs well in problems with less state change
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Critique / Limitations / Open Issues

e How generalizable is the reduction framework to the real-world, complex
tasks with high-dimensional trajectories?
e What are some challenges when implementing the reduction framework in

different problem settings?

e The paper mentions two types of loss function: 0-1 loss or squared loss. What

other loss functions can the algorithm be extended to?
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Future Work

e More sophisticated strategies than simple greedy forward for decoding
structured prediction

e Using base classifiers relay on Inverse Optimal Control techniques to learn a
cost function

e Scalability of DAGGER to real-world scenarios
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Extended Readings

e Forward Training and SMILe: S. Ross and J. A. Bagnell. Efficient reductions for imitation learning. In
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS),
2010.

e Inverse Optimal Control: P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the 21st International Conference on Machine Learning (ICML), 2004
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Summary

7
L. %4

R/
%

Addresses the problem of compounding errors in sequential prediction problems

Robots deployed in the real world will face these problems of taking actions in a changing environment
where their actions could affect the environment

Prior works are based on nonstationary policies that includes different policies for each timestep, or
stochastic policy of mixing policies => poor performance with compounding errors

DAGGER, a no-regret method, aggregates data from learned policy

Instead of compounding errors, DAGGER error rate is linear

DAGGER performed better than other approaches in various imitation learning and sequential

prediction tasks
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Thanks!
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