

Agile Autonomous Driving using End-to-End Deep Imitation Learning

Presenter: Shaoheng Fang

2023.10.03

Task: Off-Road Autonomous Driving

A challenging robotics problem:

- Physically-complex, uncertain environment
- The surface is constantly evolving and highly stochastic

Requirements:

- Precise steering and throttle maneuvers
- High speed, high-frequency decisions

Task: Off-Road Autonomous Driving

A challenging robotics problem:

- Physically-complex, uncertain environment
- The surface is constantly evolving and highly stochastic

Requirements:

- Precise steering and throttle maneuvers
- High speed, high-frequency decisions

An end-to-end imitation learning system

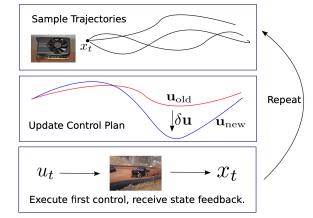
Previous Works

Model-predictive control (MPC) algorithm

An optimal control technique in which the calculated control actions minimize a cost function for a constrained dynamical system

Model Predictive Path Integral (MPPI) Control

- Sample multiple trajectories from current state
- Compute the cost function of each trajectory
- Update the control sequence
- Execute the first control, update the initial control sequence



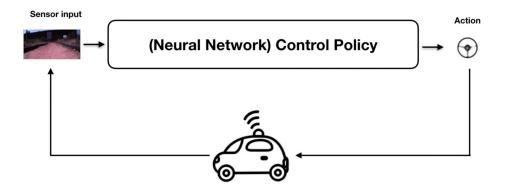
Motivation — End-to-End Learning

Previous: Model-predictive control (MPC)

- Expensive sensors (GPS, IMU) for state estimation
- High frequency online replanning (low speed)
- Computationally expensive

End-to-End framework

- Lower cost
- Faster inference time



Motivation — Imitation Learning

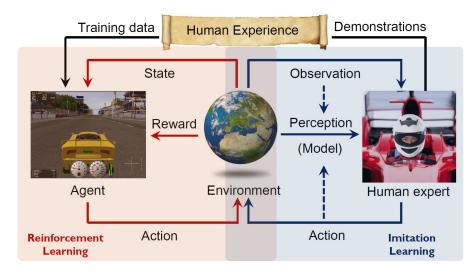
Model-free reinforcement learning:

- Sample inefficiency
- Costly
- Damage to the robots

Imitation Learning

Learn the policy from an expert

An expert is needed (human / teacher model)



Previous Works

Imitation Learning for autonomous driving

Methods	Tasks	Observations	Action	Algorithm	Expert	Experiment
[1]	On-road low-speed	Single image	Steering	Batch	Human	Real & simulated
[23]	On-road low-speed	Single image & laser	Steering	Batch	Human	Real & simulated
[24]	On-road low-speed	Single image	Steering	Batch	Human	Simulated
[20]	Off-road low-speed	Left & right images	Steering	Batch	Human	Real
[33]	On-road unknown speed	Single image	Steering + break	Online	Pre-specified policy	Simulated
Our	Off-road high-speed	Single image +	Steering + throttle	Batch &	Model predictive controller	Real &
Method	on roug ingn-speed	wheel speeds	Steering + unotife	online	woder predictive controller	simulated

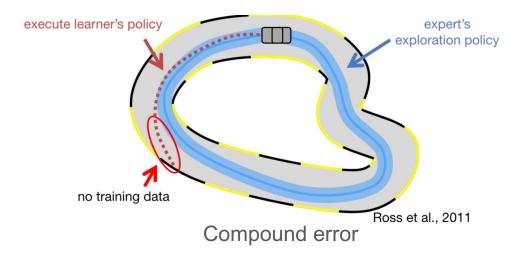
off-road; real-world experiment environment; online imitation learning

Preliminary

Batch Imitation Learning vs Online Imitation Learning

Batch Imitation Learning:

Collect training data D from an expert policy \rightarrow Train the learner's policy on D



Preliminary

Online Imitation Learning

```
DAgger (Dataset Aggregation) Method
```

Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . for i = 1 to N do Let $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \mid \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . end for **Return** best $\hat{\pi}_i$ on validation.

 π^* : expert policy

 β : mixing rate

Experimental Setup

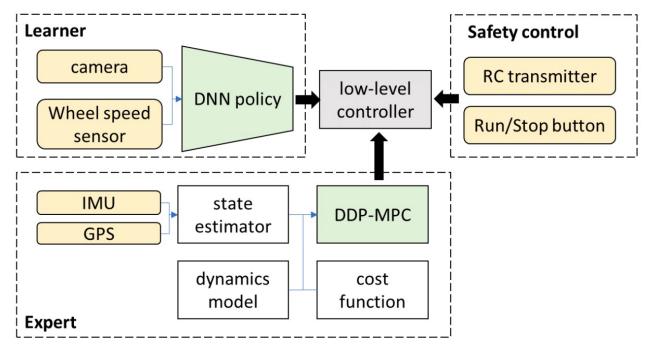
Autonomous driving platform:

- 1/5-scale autonomous AutoRally car
- On-board device (GTX 750 Ti GPU)
- Camera sensor: \$500, GPS/IMU: \$6000
- 50 Hz sampling rate

Off-road autonomous driving task

- A fixed dirt track
- A desired speed of 7.5 m/s

Framework

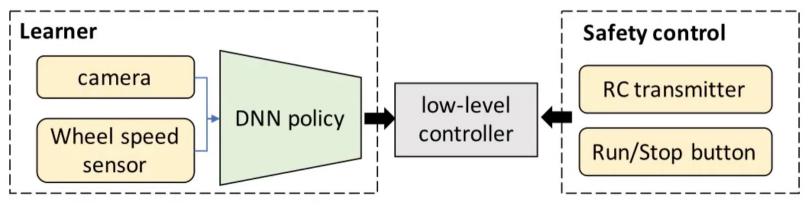


Training Phase

Framework

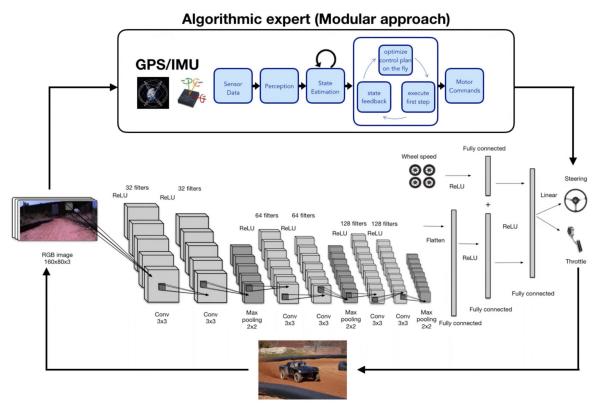
After the entire learning session of each setting, three rollouts will be performed

using the learned policy for performance evaluation.



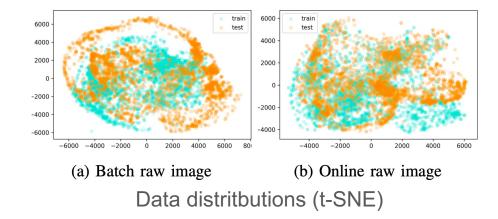
Testing Phase

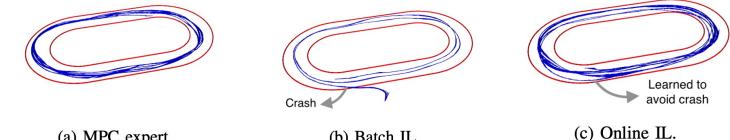
Framework



Experimental Results — Qualitative

Batch IL v.s. Online IL



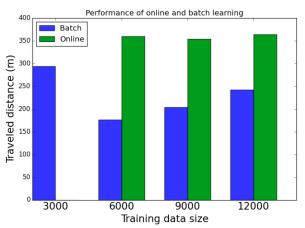


(a) MPC expert.

(b) Batch IL.

Experimental Results — Quantitative

- Online IL outperforms Batch IL
- Online IL performance monotonically improves as more training data is involved
- Achieve similar performance (speed) to the expert



Policy	Avg. speed	Top speed	Training data	Completion ratio	Total loss	Steering/Throttle loss
Expert	6.05 m/s	8.14 m/s	N/A	100 %	0	0
Batch	4.97 m/s	5.51 m/s	3000	100 %	0.108	0.092/0.124
Batch	6.02 m/s	8.18 m/s	6000	51 %	0108	0.162/0.055
Batch	5.79 m/s	7.78 m/s	9000	53 %	0.123	0.193/0.071
Batch	5.95 m/s	8.01 m/s	12000	69 %	0.105	0.125/0.083
Online (1 iter)	6.02 m/s	7.88 m/s	6000	100 %	0.090	0.112/0.067
Online (2 iter)	5.89 m/s	8.02 m/s	9000	100 %	0.075	0.095/0.055
Online (3 iter)	6.07 m/s	8.06 m/s	12000	100 %	0.064	0.073/0.055

Distance traveled without crashing

Experimental Results



Test run after 3 iterations of online learning

Limitations

- A task-specific expert is indispensable, which means it is not extensively applicable.
- The experimental setting is simple, only on an empty elliptical dirt track.
- Only show the result from an MPC expert, human-guided imitation learning result is not demonstrated.
- The novelty is medium. The key module (online IL) is from Dagger.

Future Work for Paper / Reading

- How can the imitation learning method perform on more complicated tasks? (obstacles, more curves, different weather)
- How is the generalization ability to more unseen tracks?
- Other robot agents and tasks (UAVs, boats, etc.)

Extended Readings

Off-road autonomous driving:

- Drews, Paul, et al. "Aggressive deep driving: Model predictive control with a cnn cost model." (2017)
- Williams, Grady, et al. "Aggressive driving with model predictive path integral control." (2016)
- Williams, Grady, et al. "Information theoretic MPC for model-based reinforcement learning." (2017)

Extended Readings

Imitation Learning and applications:

- Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." (2011)
- Zhang, Jiakai, and Kyunghyun Cho. "Query-efficient imitation learning for end-to-end autonomous driving." (2016)
- Ross, Stéphane, et al. "Learning monocular reactive uav control in cluttered natural environments." (2013)

Summary

Focus on off-Road Autonomous Driving

- An end-to-end framework instead of the traditional optimal control approach
- Imitation learning method

Batch IL v.s. Online IL: online IL is always better in terms of performance

A successful real-world application for imitation learning theory SOTA on off-road autonomous driving: good performance, lower cost, higher frequency

Thank you!