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Task: Off-Road Autonomous Driving

A challenging robotics problem:

* Physically-complex, uncertain environment
» The surface is constantly evolving and highly stochastic
Requirements:

* Precise steering and throttle maneuvers

» High speed, high-frequency decisions
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An end-to-end imitation learning system

CS391R: Robot Learning (Fall 2023)



Previous Works

Model-predictive control (MPC) algorithm

An optimal control technique in which the calculated control actions minimize

a cost function for a constrained dynamical system

Sample Trajectories
Model Predictive Path Integral (MPPI) Control %

« Sample multiple trajectories from current state

Uold Repeat

lé U _yew

» Compute the cost function of each trajectory

Update Control Plan

» Update the control sequence
s s

» Execute the first control, update the initial control sequence

Execute first control, receive state feedback.
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Motivation — End-to-End Learning

Previous: Model-predictive control (MPC)
» Expensive sensors (GPS, IMU) for state estimation
» High frequency online replanning (low speed)

« Computationally expensive

Sensor input

Action

End-to-End framework -—>[ (Neural Network) Control Policy ]_. @

» Lower cost

 Faster inference time

OB
b"\\
b
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Motivation — Imitation Learning

Model-free reinforcement learning: R B T éipeﬁéﬁce]l Demonstrabions

« Sample inefficiency

l State | | Observation l
« Costly - i
Perception
« Damage to the robots i
(Model)
A P—
Agent Environment i
' |
1
Imitation Learning Reinforcement  Action Action Imitation
Learning Learning

Learn the policy from an expert

An expert is needed (human / teacher model)
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Previous Works

Imitation Learning for autonomous driving

| Methods | Tasks | Observations | Action | Algorithm | Expert |  Experiment |

[1] On-road low-speed Single image Steering Batch Human Real &simulated
[23] On-road low-speed Single image & laser Steering Batch Human Real &simulated
[24] On-road low-speed Single image Steering Batch Human Simulated
[20] Off-road low-speed Left & right images Steering Batch Human Real
[33] On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated
Our . Single image + . Batch & - Real &

Method Off-road high-speed wheel speeds Steering + throttle sitliie Model predictive controller a——

off-road; real-world experiment environment ; online imitation learning
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Preliminary

Batch Imitation Learning vs Online Imitation Learning

Batch Imitation Learning:

Collect training data D from an expert policy — Train the learner’s policy on D

execute learner’s policy = expert’s

){ exploration policy

no training data

\
Ross et al., 2011

Compound error

CS391R: Robot Learning (Fall 2023) 8




Preliminary

Online Imitation Learning

DAgger (Dataset Aggregation) Method

Initialize D < (.

Initialize 71 to any policy in IL.

for: =1to N do
Let m; = B;w* + (1 — B;)7;. m*: expert policy
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D|JD;.
Train classifier 7; 1 on D.

end for

Return best 7; on validation.

f: mixing rate
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Experimental Setup

Autonomous driving platform:

» 1/5-scale autonomous AutoRally car

* On-board device (GTX 750 Ti GPU)

« Camera sensor: $500, GPS/IMU: $6000

» 50 Hz sampling rate

Off-road autonomous driving task
» A fixed dirt track
» A desired speed of 7.5 m/s
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Framework

Safety control

[ camera ]’
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: ow-level
» DNN policy |msp ﬁ
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: model function :
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Training Phase
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Framework

After the entire learning session of each setting, three rollouts will be performed
using the learned policy for performance evaluation.

o S T T o T = e A S |
Learner Safety control

s

camera RC transmitter

| : |
| | :
| ' |
: § g : I | I |
i DNN policy [miy OV Ve | qum C

1 |
: l | :
| ' : |

|
|
|
I 2
|
I

(Wheel speed | controller a
P Run/Stop button
sensor L

Testing Phase
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Framework

RGB image
160x80x3

A

Algorithmic expert (Modular approach)

GPS/IMU

/ "
= Sensor Perception
ﬁ - Data Estimation execute
i first step
e

D)

optimize
7 fontrol plan] ~\
/" | on the fly i
State

Motor
Commands

32 filters
RelLU

32 filters

RelLU

64 filters.

I RelLU

Conv
3x3

Conv Max
3x3 pooling
2x2
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Experimental Results — Qualitative

Batch IL v.s. Online IL

Test result
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(a) Batch raw image

(b) Online raw image

Data distritbutions (t-SNE)

(a) MPC expert.
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(b) Batch IL.

Learned to
avoid crash

(c) Online IL.




Experimental Results — Quantitative

Performance of online and batch learning

Il Batch

I Online

* Online IL outperforms Batch IL

* Online IL performance monotonically improves as

Traveled distance (m)

more training data is involved

» Achieve similar performance (speed) to the expert

3000 6000 9000 12000
Training data size

Distance traveled without crashing

| Policy | Avg. speed | Top speed | Training data | Completion ratio | Total loss | Steering/Throttle loss |
Expert 6.05 m/s 8.14 m/s N/A 100 % 0 0
Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124
Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055
Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071
Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083
Online (1 iter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 iter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055
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Experimental Results

Test run after 3 iterations of online learning
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Limitations

» A task-specific expert is indispensable, which means it is not extensively applicable.
* The experimental setting is simple, only on an empty elliptical dirt track.
* Only show the result from an MPC expert, human-guided imitation learning result is

not demonstrated.

* The novelty is medium. The key module (online IL) is from Dagger.
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Future Work for Paper / Reading

* How can the imitation learning method perform on more complicated tasks?
(obstacles, more curves, different weather)
» How is the generalization ability to more unseen tracks?

» Other robot agents and tasks (UAVs, boats, etc.)
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Extended Readings

Off-road autonomous driving:
» Drews, Paul, et al. “Aggressive deep driving: Model predictive control with a cnn cost model.” (2017)

« Williams, Grady, et al. "Aggressive driving with model predictive path integral control.” (2016)

» Williams, Grady, et al. "Information theoretic MPC for model-based reinforcement learning.” (2017)
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Extended Readings

Imitation Learning and applications:

* Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell. "A reduction of imitation learning and structured
prediction to no-regret online learning.” (2011)

» Zhang, Jiakai, and Kyunghyun Cho. "Query-efficient imitation learning for end-to-end autonomous
driving.” (2016)

* Ross, Stéphane, et al. "Learning monocular reactive uav control in cluttered natural environments.”
(2013)
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Summary

Focus on off-Road Autonomous Driving
- An end-to-end framework instead of the traditional optimal control approach
- Imitation learning method

Batch IL v.s. Online IL: online IL is always better in terms of performance

A successful real-world application for imitation learning theory

SOTA on off-road autonomous driving: good performance, lower cost, higher frequency
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Thank you!
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