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Motivation

● Environment exploration during 

training can be impractical or 

dangerous
○ Train policies using data collected by a 

behavior policy (Offline RL)

● Improvement over a behavior 

policy requires deviation
○ Estimate values for actions not 

present in the dataset
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Main Problem

● Values of actions too different from those in a dataset are unlikely to be 

estimated accurately

● Prior methods:
○ Constrain resulting policy to limit deviation from behavior policy 

○ Regularize learned value function

■ Assign low values to out-of-distribution actions

● Such methods trade policy improvement for limited misestimation

● Proposed work: approximate an upper expectile of the distribution over 
values w.r.t the distribution of dataset actions for each state
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Context - Reinforcement Learning

● Formulated as a Markov decision process (S, A, p0(s), p(s0|s, a), r(s, a), 𝛄)
● S: space
● A: action space
● p0(s): distribution of initial states
● p(s0|s, a): environment dynamics
● r(s, a): reward function
● 𝛄: discount factor
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Context - Reinforcement Learning

● Agent interacts with a MDP using a policy 𝛑(a|s)
● Goal: obtain a policy that maximizes the cumulative discounted returns
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Problem Setting

● Modify the Temporal Difference loss LTD(𝜭) to avoid out-of-dataset (unseen) 
action estimations

● D: a dataset
● r(s, a): reward function
● 𝛄: discount factor
● Qθ_hat(s’, a’): target network
● Qθ(s, a): parameterized Q-function
● policy π(s) = arg maxa Qθ(s, a)
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Prior Work - “multi-step” approaches

Offline RL methods based on approximate dynamic programming.

● Constraints implemented as explicit density model
○  Wu et al., 2019; Fujimoto et al., 2019; Kumar et al., 2019

● Implicit divergence constraints
○ Nair et al., 2020; Wang et al., 2020; Peters & Schaal, 2007; Peng et al., 2019

● Supervised learning term in policy improvement objective
○  Fujimoto & Gu, 2021

● Direct Q-function regularization
○ Kostrikov et al., 2021; Kumar et al., 2020
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Prior Work - “single-step” approaches

Methods which don’t use a value function, or learn that of the behaviour policy.

● Single policy iteration step + greedy policy extraction
○ Peng et al., 2019; Brandfonbrener et al., 2021

● Behavorial cloning objectives
○  Chen et al., 2021

Advantages: 
● Simple to implement
● Effective on some benchmark tasks (MuJoCo locomotion in D4RL)

Disadvantages:
● Perform poorly on complex D4RL benchmarks requiring combination of suboptimal trajectories
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Implicit Q-Learning

● Learn the value function given by L(𝜽) objective

● Evaluate the Q-function only on the state-action pairs in the dataset
○ Estimate maximum Q-value using actions in support of the data distribution

○ Reformulate L(𝜽) to use upper expectile prediction 
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Implicit Q-Learning

● Introduce a separate value function that approximates an expectile only with 
respect to the action distribution
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Implicit Q-Learning

● The updated TD learning procedure estimates the optimal Q-function, but 
does not represent the corresponding policy

● Policy extraction performed by advantage weighted regression
● 𝛽: an inverse temperature

○ small values causes behavior similar to behavioral cloning 
○ larger values attempt to recover the maximum of the Q-function
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Algorithm Summary

Stage 1: 

● Fit the value function and 

Q-function

● Gradient steps on LV (ψ) & LQ(θ)

Stage 2:

● Perform SGD on the policy 

extraction objective
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Implicit Q-Learning - Theory

Section 4.4 and corresponding appendices present a series of lemmas and 

theorems which show that the IQL procedure correctly recovers the optimal value 

function under the given sampling constraints.

● General idea: apply and prove an upper bound on value expectation

● The 𝜏 hyperparameter results from introducing expectile regression

○ 𝜏 = 0.5 (SARSA, on-policy)

○ 𝜏 → 1 (Q-learning, off-policy) 
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Experimental Setup

Perform comparative analysis between IQL, single-step methods, and multi-step 

methods.

1. Demonstrate benefits of multi-step methods over single-step methods

2. Compare IQL to state of the art single & multi-step methods on D4RL 

benchmark tasks

3. Compare IQL to other methods during online finetuning
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Experimental Setup: One-step vs IQL

● U shaped maze w/ one start and one goal state

● Reward of 10 for entering the goal state and zero otherwise

● Dataset: 1 optimal trajectory and 99 trajectories with uniform random 

actions

● Baseline: Onepstep RL (Brandfonbrener et al., 2021; Wang et al., 2018)
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Results: One-step vs IQL

● One-step
○ state rewards decay faster than true value function

○ resulting policy dominated by noise

● IQL 

○ better propagates reward signal 

○ closely approximates V*
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Experimental Setup: Offline RL Benchmarks

● MuJoCo simulator: Gym locomotion, Ant Maze, Adroit & Kitchen manipulation 

environments

● Dataset: D4RL

● Baselines:

○ One-step: Onestep RL (Brandfonbrener et al., 2021), Decision Transformers 

(Chen et al., 2021)

○  Multi-step: CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021), and 

AWAC (Nair et al., 2020)

● Metrics: averaged normalized scores on MuJoCo tasks
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Experimental Results: D4RL
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Results Analysis

● The 𝜏 hyper parameter is crucial to 

effective performance on complex 

tasks

● Baseline and IQL methods have 

similar performance on easier tasks

● IQL is computationally faster than 

baseline methods
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Critique

● The importance of the 𝜏 hyperparameter results in IQL’s effectiveness being 

coupled to hyperparameter tuning procedures.
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Extended Readings

● Kostrikov, Ilya, Ashvin Nair, and Sergey Levine, "IDQL: Implicit Q-Learning 

as an Actor-Critic Method with Diffusion Policies." arXiv preprint 

arXiv:2304.10573 (2023).

● Snell, Charlie, et al. "Offline rl for natural language generation with implicit 

language q learning." arXiv preprint arXiv:2206.11871 (2022).

● Chitnis, Rohan, et al. "IQL-TD-MPC: Implicit Q-Learning for Hierarchical 

Model Predictive Control." arXiv preprint arXiv:2306.00867 (2023).
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Summary
● Problem: Developing an offline RL algorithm which avoids out-of-dataset action value 

estimation while still performing multi-step dynamic programming 

○ Value estimation of out-of-dataset actions is frequently inaccurate

● Prior work primarily focuses on constraining distributional drift, regularizing 

out-of-distribution sample estimates, or avoids value estimates entirely  
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Summary
● Insight: fitting the Q-function to estimate state conditional expectiles correctly 

represents the maximum Q-value over actions within the data distribution

● Results: The modified optimization objective can avoid out-of-dataset action estimation, 

improve upon a behavior policy, outperform or match existing offline RL algorithms, 

while being computationally more efficient.
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Discussion

● How might we procedurally estimate a ‘good’ value for the 𝜏 hyperparameter?


