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Legged locomotion systems are very capable
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But designing control algorithms for legged robotics 
systems is very difficult. 

- These robots are high-dimensional and nonsmooth systems with many 
physical constraints.

- Contact points change over the course of time and depending on the 
maneuver being executed

- Analytical models of the robots are often inaccurate and cause uncertainties 
in the dynamics.

- A complex sensor suite and multiple layers of software bring noise and delays 
to information transfer.
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Conventional control theories are often insufficient to 
deal with these problems effectively, and specialized 

control methods are very difficult to design.
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Conventional control theories are often insufficient to 
deal with these problems effectively, and specialized 

control methods are very difficult to design.

Modular controller design approaches:

Approximate robot as 
pointmass, compute 

foothold position

Compute parameterized 
trajectory for foot to 

follow

Track trajectory using 
PID controller

See [7-12] from paper for examples of this approach.
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Conventional control theories are often insufficient to 
deal with these problems effectively, and specialized 

control methods are very difficult to design.

Planning module computes 
an optimal path using 
numerical optimization

Tracking module follows 
path

See [13-17] from paper for examples of this approach.

Trajectory optimization approaches:
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Conventional control theories are often insufficient to 
deal with these problems effectively, and specialized 

control methods are very difficult to design.

Data is collected in the real 
world

Controller is updated 
using reinforcement 

learning

See [18-20] from paper for examples of this approach.

Data-driven optimization approaches:
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Can we train an RL policy for quadruped locomotion 
in simulation and then execute it in the real world?
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Handling the simulation-reality gap

Improve simulation 
fidelity (analytically 

or data-driven)

Make controller 
robust to differences 

in variations, 
allowing for better 

transfer.
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Handling the simulation-reality gap

Improve simulation 
fidelity (analytically 

or data-driven)

Make controller 
robust to differences 

in variations, 
allowing for better 

transfer.

Classical models representing 
well-known articulated system and 

contact dynamics + learning methods 
that can handle complex actuation

RL policy trained with lots of data in 
simulation 
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We need to model the dynamics of intermittent 
contacts when walking

- Authors use a rigid-body contact solver from 
their previous work [41]

We need to model the inertial property of links
- Uses supplied CAD model
- Roughly 20% error in estimation due to 

unmodeled factors (ie: cables, electronics)
- 30 different models are used when training, 

with each model having stochastically sampled 
inertial properties.
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We need to model the actuators
- Uses supervised learning to train an MLP that 

maps from actions to torques.
- Assumes the dynamics of the actuators are 

independent to each other, so a separate model 
is learned per actuator.

- Internal states of the actuators (e.g., states of 
the internal controllers and motor velocity) 
cannot be measured directly and must be 
inferred by the learned model.
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Actuator net

Estimated joint 
torques

History of position errors
(actual position - 

commanded position)

Joint velocity 
history
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Inputted Observation:
- Current command

- Forward/lateral velocity, turning 
rate

- Can be specified by user via 
teleoperation

- Height, linear, and angular velocities 
of robot base

- Positions and velocities of robot 
joints

- Previous action
- Sparsely sampled joint state history.

- Enables contact detection, 
avoiding the need for force 
sensors
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Outputted Action:
- Joint position commands
- In simulation: fed into the actuator 

net to get resulting joint torques
- In real-world: fed directly to robot



CS391R: Robot Learning (Fall 2023) 18

RL algorithm: TRPO
Discount factor: (tuned to be) 0.9988 
for walking/running and 0.993 for 
recovery
Initial state: sampled from previous 
trajectory or random distribution
Curriculum: 

- A curriculum factor, k_c,  is definition 
initially between 0 and 1. k_c 
increases monotonically and 
asymptotically to 1.

- All cost terms are multiplied by k_c, 
except those related to the objective.

- Encourages robot to first learn how 
to achieve the objective and then 
satisfy constraints. 
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Results
When only training for 4-11 hours on a personal laptop entirely in simulation, 
and then running the learned policy directly on the robot with no further 
modifications…
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Results: 
Command 
Conditioned 
Locomotion

The motion of the robot 
is controlled by high 
level navigation 
commands.
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High speed locomotion
- Achieves 25% faster walk than previous fastest walk on the ANYmal robot.
- Shows that the learned policy can exploit the full capacity of the hardware, 

even when trained in simulation!
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Recovery from fall
- The recovery controller successfully enables ANYmal to stand up from all 

tested fallen positions.
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Highlights of this method:
- Achieves a high level of locomotion skill when trained entirely in simulation.
- The training procedure can be run in half a day on a personal computer.
- Does not require tedious tuning of parameters (that often takes months and 

many engineers) like all previous methods.
- Only requires a cost function, an initial state distribution, randomization 

parameters, and a CAD model.
- Learned policies are robust to changes in the hardware, such as through wear 

and tear or part replacements.
- Inference on the real robot takes ~25 μs.



CS391R: Robot Learning (Fall 2023) 24

Limitations of this method:
- A cost function and state distribution still need to be defined, which can be 

very tricky and require lots of trial and error.
- A CAD model that contains information needed for rigid-body modelling is still 

required. Such a CAD model may not exist for all robots. 
- The learned actuator network cannot handle actuators that rely on coupled 

dynamics (ie: hydraulic actuators sharing a single accumulator).
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Open questions and future work
- How can we more effectively specify cost functions for training different 

maneuvers? Can we learn such cost functions from human feedback?
- How good does simulation fidelity need to be, and how much of the remaining 

gap can be handled with a robust controller?
- Does having a simulator with very high fidelity impede the training of a robust 

controller? We do not want to overfit to the simulator. 
- Can we iteratively improve simulation fidelity using collected real-world data?
- Training does not have to happen entirely in simulation. Can we use small 

amounts of policy rollouts in the real world to improve simulation fidelity or 
controller robustness?
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Extended Readings

- Rethinking Sim2Real: Lower Fidelity Simulation Leads to Higher Sim2Real 
Transfer in Navigation

- Stochastic Grounded Action Transformation for Robot Learning in Simulation
- An Imitation from Observation Approach to Transfer Learning with Dynamics 

Mismatch
- Sim2Real Transfer for Reinforcement Learning without Dynamics 

Randomization
- Domain randomization for transferring deep neural networks from simulation 

to the real world
- Transfer from Simulation to Real World through Learning Deep Inverse 

Dynamics Model
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Motivation: Legged robots are attractive alternatives to tracked/wheeled robots for 
applications with rough terrain and complex cluttered environments, but learning good 
locomotion policies is very challenging.

Limitations of prior work: Most previous approaches require teams of engineers to 
spend months tuning modular controllers for each new maneuver. Data-driven 
approaches, on the other hand, are limited by the constraints of training in the 
real-world. 

Problem: How can we train a locomotion policy using RL in simulation and then 
directly transfer this policy to the real robot?

Key insights: With a learned actuator network, a stochastic rigid body model of the 
robot, and a carefully designed RL training procedure, the authors are able to 
successfully learn numerous transferable maneuvers for the ANYmal robot.  


