
CS391R: Robot Learning (Fall 2023)

Driving Policy Transfer via Modularity 
and Abstraction

1

Presenter: Yasaswini Konthala

October 26, 2023



CS391R: Robot Learning (Fall 2023) 2

High-Level Problem Description

❖ This paper addresses the challenge of transferring driving policies from 

simulation to reality.

❖ Autonomous driving is a crucial component of general-purpose robot autonomy, 

with broad implications for various industries.

❖ Solving this problem can revolutionize transportation, making it safer, more 

efficient, and environmentally friendly.
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Importance and Impact

❖ Autonomous driving systems have the potential to transform industries, from 
logistics to public transportation, making them more efficient and reducing 
accidents.

❖ Improved autonomous driving can save lives, reduce traffic congestion, and 
lower carbon emissions.

❖ Autonomous vehicles could revolutionize the automotive and transportation 
industries.
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Technical Challenges

❖ Complex Transfer: Transferring control policies from simulation to reality 
involves addressing differences in sensor readings, vehicle dynamics, and 
environmental context.

❖ Safety Concerns: Safety is paramount; understanding and mitigating risks are 
critical due to the blackbox nature of end-to-end models.

❖ Diversity of Scenarios: Realistic urban driving scenarios require a huge 
amount of data to cover the full spectrum of driving conditions.
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Key Insights

❖ The proposed approach leverages modularity and abstraction to encapsulate 
the driving policy, enabling direct transfer from simulation to reality.

❖ The system architecture involves three stages: perception, driving policy, 
and low-level control, improving adaptability and robustness.

❖ Training the driving policy on real-world perception data, rather than perfect 
ground-truth data, enables it to adapt to real-world imperfections.
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Problem Setting

❖ The authors of the paper aim to transfer driving policies from simulation to 

reality effectively.

❖ Objective: Achieve direct transfer of driving policies without the need for 

retraining or fine-tuning in real-world conditions.

❖ Challenge: Overcoming the reality gap, encompassing differences in sensor 

data, dynamics, and environmental context between simulation and reality.
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Context / Related Work 

❖ Transfer from Simulation to Reality: Previous studies have extensively 
explored transferring knowledge from simulation to real-world scenarios in 
computer vision and robotics.

➢ Use of synthetic data for training and evaluation in indoor and driving 
scenarios.

➢ Notable challenges persist in direct transfer despite high-fidelity 
simulation.
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Context / Related Work 

❖ Transfer of Sensorimotor Control Policies: Prior work primarily focused on 
manual grasping and manipulation, utilizing specialized learning techniques 
and network architectures.
➢ Techniques include domain adaptation, depth maps, and domain 

randomization.

❖ Transfer of Driving Policies: Transfer of driving policies has historical 
significance, with early attempts focusing on rudimentary lane following.
➢  More recent efforts have addressed obstacle avoidance and collision 

prevention in smaller robotic vehicles.
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Limitations of Prior Work

❖ Complexity and Robustness: Existing approaches often lack the complexity 
and robustness required for outdoor urban driving.

❖ Nuisance Factors: Some approaches use domain randomization to handle 
the differences between simulation and reality, which may not be directly 
applicable to urban driving.

❖ Modularity: Previous modular designs result in error accumulation and 
require meticulous engineering in each component.
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Proposed Approach

❖ The proposed autonomous driving system comprises three components: a 

perception module, a driving policy, and a low-level controller.

      Figure : System 

architecture
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Perception Module

❖ The Perception Module processes a raw RGB image, generating a binary 
segmentation map that abstracts away unnecessary information and retains 
essential data.

❖ A convolutional neural network, based on the ERFNet architecture, is utilized 
for binary road segmentation, trained on the real-world Cityscapes dataset.

❖ The perception module's role is to filter out nuisance factors, such as texture, 
lighting, and weather, while preserving critical information.
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Driving Policy

❖ The Driving Policy receives the segmentation map and outputs a local 
trajectory plan represented by waypoints.

❖ The waypoints wj are encoded by the 
distance rj and the (oriented) angle ϕj 
with respect to the heading direction v 
of the car.
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❖ Trained in simulation using conditional imitation learning (CIL), allowing 
conditioning on high-level commands for navigation.

❖ Dataset: {oi , ci , ai}Ni=1 of observation-command-action tuples, from 
trajectories of an expert driving policy
➢ An observation can be an image or a segmentation map; 
➢ The action can be either vehicle controls (steering, throttle) or waypoints; 
➢ The command is a categorical variable indicating one of three high-level navigation 

instructions (left, straight, right) 
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❖ Used a deep network as the function approximator and adopt the branched 
architecture of Codevilla et al. [8], with a shared convolutional encoder and a 
small fully-connected specialist network for each of the commands.

Branched architecture of Codevilla et al. [8]



CS391R: Robot Learning (Fall 2023) 16

Control

❖ Control is achieved using PID controllers for throttle and steering angle.

❖ Throttle PID control uses the difference between target and current speed as 
the error.

❖ Steering angle PID control employs the oriented angle between the viewing 
direction and the direction to the first waypoint (ϕ1) as the error.
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Experimental Setup

❖ Two domains: simulation and a physical 1/5-scale truck

❖ Simulation: CARLA, an open-source simulator for urban driving, which 

provides two towns (Town 1 and Town 2) with different layouts, sizes, and 

visual styles.

❖ Physical System: A modified 1/5-scale Traxxas Maxx truck equipped with 

hardware, the onboard computer, an Nvidia TX2, is responsible for most of the 

computation.
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The authors compare their approach with several baselines:
  1. Image to Control (img2ctrl): Predicting low-level control directly from color 
images.
  2. Image to Waypoint (img2wp): Predicting waypoints directly from color 
images.
  3. Segmentation to Control (seg2ctrl): A policy that predicts low-level control 
from segmentation maps.
  4. Segmentation to Waypoint: The proposed full model that predicts waypoints 
from segmentation maps.
  5. Variants of these models trained with data augmentation.
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Evaluation Metrics

❖ The success of their approach is evaluated using a protocol where 25 start-
goal pairs in each town are tested, and the percentage of successfully 
completed episodes is measured. 

❖ Success is defined as the vehicle reaching the goal point given high-level 
commands.

❖ Additional metrics related to road -  including the success rate over different 
navigation trials with varying distances to be driven.
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Experimental Results

Driving in Simulation:

❖ The proposed approach outperforms baselines in both training and 

generalization to the test environment and weather conditions.

❖ Data augmentation further enhances performance, particularly in the 

challenging Town 2/Weather 2 scenario.



CS391R: Robot Learning (Fall 2023) 21

Experimental Results

Driving in the Physical World

❖ The proposed modular approach 

achieves 100% success in the real 

world with data augmentation.

❖ Surprisingly, img2wp performs 

better in some real-world trials.
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Discussion of Results

❖ The experimental results indicate the robustness of the proposed modular 

approach for autonomous urban driving.

❖ The approach outperforms baseline methods in both simulation and the real-

world physical driving environment.

❖ Remarkably, it demonstrates strong generalization to complex real-world 

conditions, without the use of real-world data during training.
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Discussion of Results

❖ The results confirm the effectiveness of the proposed perception-to-action 

pipeline, with waypoint prediction based on segmentation data.

❖ The waypoint-based approach provides significant benefits for generalization to 

diverse conditions, outperforming control-based and image-to-waypoint 

baselines.

❖ Data augmentation enhances performance, especially in challenging scenarios, 

such as Town 2 and Weather 2.
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Key limitations of the approach 

❖ Data Intensive Training: The approach relies heavily on simulation data

❖ Segmentation Reliability: The accuracy of the perception module's 

segmentation may be sensitive to real-world variability

❖ Real-world Generalization: While the method shows promise, there is still 

room for improvement in real-world conditions, especially when dealing with 

complex, unexpected scenarios.
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Practical challenges in the Real-World deployment

❖ Sensor Realism: Ensuring the fidelity and robustness of onboard sensors and 

real-world sensor data collection can be challenging.

❖ Safety Concerns: Ensuring that the system behaves safely in unforeseen 

situations is a significant challenge.

❖ Dynamic Environments: Handling interactions with pedestrians, cyclists, and 

other road users, especially in urban settings, is a complex real-world 

challenge.
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Future Work 

❖ Develop methods for ensuring safety in real-world deployments. This includes 

handling unforeseen situations, adhering to traffic rules, and understanding and 

predicting the behavior of other road users.

❖ Enhance the system's capability to predict and respond to the intentions of 

pedestrians, cyclists, and other drivers, considering human behavior models.

❖ Investigate how autonomous vehicles can collaborate with each other and with 

non-autonomous vehicles to optimize traffic flow and safety.
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Summary

❖ The paper focuses on achieving autonomous urban driving, with the central 

challenge of enabling AI systems to generalize from simulation to real-world 

scenarios effectively.

❖ The paper introduces a modular approach that decouples perception, planning, 

and control. 

❖ The proposed approach showcases remarkable generalization from simulation 

to both Town 1 and Town 2 environments, marking a significant step towards 

the practical deployment of autonomous vehicles in urban settings.


