
Using Reinforcement Learning to Perform
Manipulation Affordance Templates

Adam Pettinger
The University of Texas at Austin
Email: adam.pettinger@utexas.edu

Abstract—This project aims to perform contact tasks with
a robotic manipulator using reinforcement learning techniques.
Instead of learning to perform a task from scratch by rewards
issued from environment/task states, the agent is explicitly told
how to execute multi-step tasks via Affordance Templates. The
goal is to make the cost of manually describing the task steps
worth it by training an agent that is good at following general
directions and avoid needing to retrain on new tasks. The project
was more difficult than originally thought, and some paring down
of the complexity was required to get reasonable results. In this
report, I will present my efforts to accomplish this goal, discuss
the results, and conclude with thoughts on interesting directions
the work could go in the future.

I. INTRODUCTION

Being able to use a robotic manipulator to perform numer-
ous unique, low-repetition tasks is paramount for expanding
robotics outside of manufacturing and deploying them in a
broader set of environments. There is a clear abundance of
research dedicated to more complicated manipulation tasks
in uncertain environments, and environments where industrial
”put a big cage around the robot” safety practices are unac-
ceptable. The research includes classical controls as well as
machine learning approaches, see surveys for each respectively
[11, 2].

In my work with the Nuclear & Applied Robotics Group
at The University of Texas at Austin, we are interested in
performing ”complex contact tasks” with mobile manipulators.
Complex contact tasks refer to tasks that involve manipulating
the environment with uncertainty in the exact positioning of
the robot or task, and may be unknown (in terms of the task ge-
ometry, forces required, and action required) until the mobile
base arrives in position to perform the task. Our current work
focuses on driving the 2-armed mobile manipulator shown in
Figure 1 across a liquid natural gas facility and performing
some maintenance tasks in the facility. Example tasks include
turning rotary and wheeled valves, pushing buttons, flipping
switches, opening doors, and releasing E-Stop buttons. For
the time being, all of the operations are completed with a
human in the loop, but we are working to push autonomy as
far as possible with the eventual goal of just having the human
operator make high level decisions about which maintenance
tasks to perform and then observe the robot complete them.

To advance the autonomy goals, we are using Affordance
Templates (AT’s) [5, 6]. I will discuss more in Section II, but
at a high level they allow the operator to set up a task and
tell the robot how to kinematically perform the task. In our

Fig. 1. A mobile manipulation platform for performing contact tasks

project, the current execution of the task is accomplished by
sequentially moving to the waypoints given from the AT with
MoveIt [1], which uses stochastic planning algorithms and is
most useful for large movements in free space. The purpose
of the work in this report is to explore alternatives to the
execution–using the same waypoint inputs–that might be better
for the constrained motion and contact forces of performing
tasks. The project focused on using model-free reinforcement
learning to train an agent that could perform AT tasks. My
results were not perfect, but showed clear promise for applying
machine learning approaches to this domain. I think further
work to address the simplifications I made as part of the project
could result in better than state-of-the-art AT execution.

The rest of this report is laid out as follows: Section II will
discuss related work, Section III will formalize the problem,
Section IV will give implementation details, Section V will
discuss the experimentation results, and Section VI will wrap
up with conclusions and a discussion of future work.

II. RELATED WORK

There is a plethora of research using machine learning
to perform manipulation tasks. I will stick to model-free
reinforcement learning as this is what I used for my project.

I chose to focus on model-free reinforcement learning
mostly for its ease of setup. I think there is a strong argument
that model-free approaches are sub-optimal for this kind of



problem, and I will discuss more in the conclusion. Primarily,
I went with model-free methods (specifically TRPO [10]
and SAC [3]) because they were well supported by Stable
Baselines [7], which made implementing them quite plug-and-
play.

An added benefit of the model-free approach is the ability to
change the input to the agent without too much consideration.
This allowed me to rapidly try new things and figure out what
was going to work the best. Additionally, I really like the
idea of using latent spaces or representation spaces besides
the raw sensory data from the robot. Although I do not use
camera images in this work, I think it is well suited for visual
feedback and that using a latent space as in Dreamer [4] would
be beneficial. The Dreamer work reduces image streams to a
much smaller latent space which it then uses in an actor-critic
scheme.

In a similar work, Lee et. al. [8] use neural networks to
encode a representation space from visual feedback, robot
state data, and force/torque (F/T) sensors. The representation
mapping is trained using self-supervision and once trained, is
used as the input to a model-free reinforcement learning algo-
rithm (TRPO). I like this work because of the inclusion of the
F/T data in the multi-modal representation. My previous work
[9] with contact tasks has shown that considering the contact
forces during task execution improves the task completion
rate, so including load cell data is desirable. I especially like
the way [8] uses causal convolution on multiple F/T readings
spanning some amount of time, as both the raw forces and
torques, as well as their change over time is important for
controlling contact with the environment.

A. Affordance Templates

An Affordance Template is semi-autonomous tool for per-
forming robotic tasks. They were first introduced in 2014 as
part of the DARPA Robotics Challenge [5, 6] as a way for
an operator to control a robot through a task without direct
teleoperation in the joint or operation space. A lot of the
recent work has focused on the UI to allow users to more
easily create ATs–including from teleoperated demonstration–
and manually place them with camera overlays and using
depth sensor information. At its heart, an AT is a tree of objects
and waypoints, as shown in Figure 2. With a priori known
transformations between the objects and waypoints, the user
only needs to know the transform between the current robot
position and one of the AT objects to be able to move the
robot to each waypoint.

Each set of waypoints forms a trajectory, which is labeled as
an ”action” for the robot to do. The idea is the only instruction
from the user is to

1) select an AT they want performed
2) set the transformation from robot to the AT (there is no

reason this can’t be automated, and doing so will likely
be part of my research)

3) select a desired action (AT’s can have multiple actions
e.g. pushing vs releasing an E-stop button)

4) hit ”go” and monitor the execution

Fig. 2. An Affordance Template is stored as a series of frames and STL
objects that allow the user to define waypoint trajectories in the object frames

Currently, users of ATs are mostly using MoveIt [1] to plan
and execute between waypoints. This is still being used be-
cause it is easy, but there are definite shortcomings in MoveIt’s
application to ATs. Firstly, MoveIt assumes there is no contact
between the robot and environment, and that reaching the
desired position is not prevented by the environment. Secondly,
by default there are no guarantees about the continuity of
the motion between subsequent waypoints. This means the
manipulator may try a large joint reconfiguration partway
through the action, which can cause the execution to fail and
poses significant safety risks.

For these reasons, I think there is substantial improvement
to be made in AT execution. In this project, I explore directly
using reinforcement learning as an alternative.

III. PROBLEM SETUP

This section formalizes my problem, starting with a high
level overview and including theoretical details as well.

A. Overview

The framework I used in this project was Robosuite [13]
for the physics and simulation environment. The modularity
of Robosuite let me try different robot controllers and use
the standard environments. I also created a new environment,
and was able to easily test different rewards and observations
quickly.

For the reinforcement learning component, I went with
Stable Baselines [7] for ease of use and because changing
algorithms was very easy.

I focused on two tasks with this work: the locked door that
comes standard in Robosuite, and a ball valve turn. The valve
task required me to create a new environment in Robosuite.
For the door task, I copied and modified the default to be able
to change the inputs and outputs for testing. To complete the
door task, the manipulator was required to turn the handle to
unlock the door before pulling it open. The valve task was



Fig. 3. A ball valve object jointed so the handle can rotate with respect to
the main valve body

simpler and required the manipulator to turn the valve handle
90 degrees. Figure 3 shows a close up of the valve.

All of my work was performed with the Panda arm and
gripper. The Panda arm was chosen it because it is 7 DoF and
looks pretty, although there should be no reason why another
arm would not work as well (with potential exceptions for 6
DoF arms).

For most of the project, I used the Operational Space
Controller (OSC) in Robosuite. The input to the controller is
a pose ∈ R6 with 3 positional and 3 rotational arguments that
describe a pose change with respect to the current pose. I chose
to use the OSC because it is similar to my research outside of
this project, and intuitively fits with using waypoints (poses)
as reference points. I did briefly experiment with joint velocity
control, but ultimately decided against continuing with it. In
addition to the arm controller, there is 1 more DoF in the
action space for the gripper. I left this as the default, and
continuous. The actual implementation seems to be discrete
(with any negative number closing the gripper and any positive
number opening it), but even the SAC agent with continuous
only action space quickly learned to control the gripper.

B. Task Descriptions

I did not want to go through the process of importing the
real AT framework into my project, so I spoofed Affordance
Templates for the given tasks. To do so, I described each task
as a series of waypoints in the base frame. Each waypoint
∈ R8 is a 3-dimension position, a 4-element quaternion
orientation, and a gripper position. To find suitable waypoints,
I manually entered control commands to the manipulator
until it was in a good position, and recorded the result. If
I was going to do it again, I would definitely implement the
teleoperation with SpaceNav mouse available in Robosuite,
as I have a SpaceNav in my apartment... By repeating this
process for multiple waypoints, I created a trajectory that
would accomplish the task. Directly telling the robot what
poses to go to in order to perform a task is an approach I think

a lot of the robot learning community would cringe at, but
is the essence behind Affordance Templates and is allowing
for real-world task completion right now. Additionally, it is
not unreasonable that human users will easily have a high-
level understanding of the task, bypassing the need to learn
some hierarchical structure. For example, the valve task is
”naturally” (to me, a human) broken down as:

1) Move to a position above the valve, oriented correctly,
with the gripper open

2) Move down to the grasp point
3) Close gripper
4) Turn valve by moving to the ”valve closed” position
5) Open gripper
6) Move to a higher position to withdraw the gripper fingers

from around the valve
With something like the above list of steps and their

corresponding waypoints recorded, all that remains is getting
the manipulator to move from one to the next, which I discuss
in Section V.

C. Waypoint Pose Error

This work involves the difference between the robot’s
current position and the target waypoint. For the gripper, this
is trivially

εgripper = qgoal − qcurrent (1)

where I use qgoal and qcurrent as the goal and current
gripper positions respectively. As a quick implementation note
here, Robosuite reports the gripper position for each finger, so
I actually use a qgoal and qcurrent for both fingers.

The position error is also easy, and is the Euclidean distance
between the target and current positions

εpos = ‖xgoal − xcurrent‖2 (2)

with xgoal and xcurrent ∈ R3 the goal and current position
respectively as [X,Y, Z]. I will also note that the vector
xgoal−xcurrent gives the delta needed to reach the goal po-
sition, and will be important as the input to the reinforcement
learning algorithm.

The rotational error is trickier. In the current pose provided
by Robosuite, the rotation is BREE ∈ SO(3) or the rotation
of the end effector (EE) with respect to the base frame (B).
When I defined waypoints, I did so with respect to the base
frame, so the goal orientations are BRgoal. Of interest to us
is the rotation from the current position to the goal

EERgoal = EERB · BRgoal = BR
−1
EE · BRgoal (3)

The above equation gives the rotation required to go from
the current orientation to the goal orientation. Each R ∈
SO(3) is represented as a quaternion with q = [w, x, y, z] =
w+x̂i+ŷj+zk̂. With all rotations as unit quaternions ‖q‖ = 1
the inverse in Equation 3 is

q−1 = q∗ = [w,−x,−y,−z] (4)



and we can find the quaternion EEqgoal that is the rotation
needed to reach goal, which is used in the observations. The
”closeness” of the orientations can be measured in different
ways. Simply, when the target and current orientation are
aligned the difference should be the identity quaternion, so
you can compare the difference between EEqgoal and identity
with a 2-norm. In this work, I prefer to find the angle of the
rotation if it were expressed in axis-angle format. Section IV
discusses more, but I also tried using the axis-angle format as
the observation. To convert from a quaternion in [w, x, y, z] to
axis-angle is

θ = 2cos−1(w) (5)

ω̄ =
[x, y, z]√
1− w2

(6)

The θ above is used when comparing how close 2 rotations
are to each other with θ = 0 being perfectly aligned. ω̄ is the
axis of rotation from axis-angle format.

IV. IMPLEMENTATION DETAILS

In this section, I will discuss the implementation of my
project. This includes the details of what I did and a healthy
dose of experimentation. The experimentation in this section
will be more of what I tried in order to get the algorithm to
behave, and Section V will be about the testing I did with the
final implementation.

To start I decided to use the default locked door environ-
ment with no modifications because it is in the Robosuite
benchmarks1 using SAC. I thought it would be useful to
compare to a Stable Baselines implementation run on my
computer with the benchmarking runs using RLKit. I used
the SAC hyperparameters from the benchmark (see table).
Figure 4 compares the episode return during training for the
runs. Note that I used the exact default for my run, so with
Panda joint velocity controllers, shown in the green curve in
the comparison.

SAC Hyperparameter Value
discount factor γ 0.99

learning rate 0.0008
buffer size 500,000

learning starts 3,300
training frequency 2

batch size 128
soft update τ 0.005

target update interval 5
entropy coefficient ”auto”

From Figure 4, the episode return after training is similiar
between my run and the baseline. The difference however is
is the benchmark was run for 500 epochs at 500 steps each
= 250K timesteps, and mine was run for 1500K timesteps
(with episodes of 1000 steps). So while the end result was
similar, my run took longer to reach it. I partially attribute

1at https://github.com/ARISE-Initiative/robosuite-benchmark

Fig. 4. Running the standard locked door environment (top) vs the results
reported in the benchmark (bottom, green curve)

this to the difference in epoch length as empirically there is a
lot of ”dead time” at the end episodes where the manipulator
moves to a random position and moves very little afterward.
I also attribute this to the difference in SAC implementations.
I did my best to match the hyperparameters, but they weren’t
exactly the same set and some where labeled differently. I have
included a video of a run of my agent performing the door
task, where you can see that it unlocks the door but struggles
to pull it open.

A. Modified Environments

Convinced that I could get similar results to the benchmark,
I moved on to modifying the door environment and creating
the valve environment. With the standard issue locked door, the
observation includes direct information about the environment
such as the current position of the door and handle, the hinge
angle of the door, and the displacement from the gripper to
the door handle. The reward directly uses the distance to door
handle (as in Equation 2) and the angle of the handle. My goal
was to remove the environment-specific pieces and instead use
target waypoints. Doing so allowed me to actually create a
single environment for training both (or > 2 in the future)
tasks, as really the agent was learning to move to a specific
waypoint.

As the observation and input to the reinforcement learning
algorithm, I used

• Proprioceptive robot state including joint, EE, and gripper
positions and velocities

• The current waypoint target pose, with the 3 DoF po-
sition, 1 DoF gripper goal, and orientation in either
quaternion or axis-angle form, as discussed later.

• The difference between the goal waypoint and current
position, as discussed in Section III.

As the reward function, I used 3 separate hyperbolic tan-
gents for the position, orientation, and gripper, with the idea

https://github.com/ARISE-Initiative/robosuite-benchmark


to do a weighted sum of them for the final reward.

rgripper = 1− tanh(αεgripper) (7)

rgripper = 1− tanh(βεpos) (8)

rorient = 1− tanh(γθ) (9)

with εgripper, εpos, and θ defined in Equations 1, 2, 5
respectively, and α, β, γ as scaling constants for the tanh
functions.

B. Training Individual Actions

In order to verify different parts of the project were working
correctly and get an idea about what [α, β, γ] to use, I decided
to test each reward function separately before combining them.

I started with the gripper because it was very simple. I
treated the gripper as a discrete problem with ”open” or
”close” positions, but nothing in between. The goal positions
of the gripper are given in the table

Gripper State Open Close
Position (m) 0.04 0.0

To train the gripper action, I simply used only the gripper
reward from Equation 7, and during each episode randomly
selected the goal state. As expected, the training of the agent
using only the gripper reward was easy, as shown in Figure 5.
Good results where achieved in under 50K timesteps. I use a
scaling factor of α = 75, but empirically I found that values
above 25 all worked well.

Fig. 5. Training only the gripper action

Next, I wanted to run the position only reward. I used only
the reward in Equation 8 and trained the agent. In this case,
I picked random positions as the goal points, but I made sure
to pick positions near the manipulation space of the door and
valve tasks. I think in future work, it would be beneficial to do
longer training runs with positions from all over the reachable
workspace in order to better generalize to new tasks. See the
table for the trained workspace. In Figure 6, I show the rewards
over a training run of 1000K timesteps, and the results look
promising. For position, I used scaling factor β = 20.

Coordinate Min bound (m) Max bound (m)
X -0.14 0.03
Y -0.25 0.1
Z 0.88 1.16

Fig. 6. Training with only the position reward

The tough one was the orientation. I initially tried to use the
axis-angle format for the observation space because intuitively
this maps well to the 3 DoF orientation input to the OSC
controller. After struggling to get any good results, I also tried
the quaternion format with no success. Figure 7 shows that
neither orientation representation ever learned a good policy.

Fig. 7. Training the orientation with axis-angle representation (top) and
quaternion representation (bottom)

I will note that in both parts of Figure 7, there is a pretty
substantial split between episodes that got basically 0 reward,
and episodes that got well above the mean. This is because
I made sure that some goal orientations were close to the
waypoints for the valve and door tasks, and the robot starting
position was close to the first waypoint. So the episodes with
high rewards were moving to a nearby orientation, which
shows some promise but the inability to generalize to further
away rotations.

Because of the poor performance of the orientation only
training, I decided to move forward without considering the
orientation. I think future work definitely should include
getting good rotational results, perhaps following a 5th or
6th order rotation representation with continuous mappings
between the representation and SO(3) rotation, as in [12].

C. Combining Rewards

With the position and gripper actions successfully trained
individually, it was time to combine them. I first attempted to
average the gripper and position rewards that had previously



worked as

r =
(1− tanh(75εgripper)) + (1− tanh(20εpos))

2
(10)

Confidently, I queued up a big 1500K timestep training
run and let it go, the results shown in Figure 8. As you can
see, there was a brief jump in rewards at the start and then
almost no change for the rest of the training. This figure looks
very similar to Figure 5, and in fact an episode return of 250
is about half of the maximum for this setup. Upon further
inspection, this was only really doing the gripper, with no
effort made to close the distance to the target waypoint.

Fig. 8. Training with combined gripper and position rewards

To combat this, I decided to do 2 things. First, I reduced the
scaling factor for the position reward to be β = 10, so that the
derivative while very close to 0 reward was more distinct. I
believe the noise in the gripper measurements was washing out
the derivative signal in the position reward when it was small.
Secondly, I reduced the overall weight of the gripper reward
compared to the position by making the reward function

r = 0.25(1− tanh(75εgripper)) + (1− tanh(10εpos)) (11)

I trained again with the new reward and got the results
shown in Figure 9. These results look better, and on inspection
the agent was moving to the correct position and controlling
the gripper simultaneously. One note for the scale of the
rewards in Figure 9 is that I was starting to test multi-waypoint
rewards, and so divided the reward by the number of waypoints
(3). Thus, the maximum reward in this case is around 155,
which means the agent here is doing well as hitting 155
assumes the manipulator moves to the goal instantly and stays
there for the episode.

Fig. 9. Training with new gripper and position rewards

The agent trained during Figure 9 is the agent I used in the
following section with no additional training. The intent was
always to avoid retraining for individual tasks, so this was an
effort at accomplishing that goal.

V. EXPERIMENTAL RESULTS

With the agent from the previous section trained, I next
needed to create the validation environments. This is where
the valve and door tasks diverged as they were separate tasks
with their own waypoint descriptions. The difference between
them is slight, however, just the varying waypoint targets and
the correctly loaded and placed object of interest.

Next, I needed a way to sequentially move from waypoint
to waypoint. In this case, I decided when change targets
with the simple heuristic approach of allowing a transition
when the manipulator was close enough to the target waypoint
and had stopped moving. Thus, 2 parameters determined the
transitions: the distance to target, and the allowable joint
change between timesteps (as the 2-norm of the joint position
change). For the project, I used the minimum distance as
5cm and the allowable joint change as 0.005 radians. For
a variety of reasons, I think sequencing through waypoints
while training the agent would have been beneficial. One of
the reasons is that the agent could be trained to decide when
it had satisfied a waypoint by itself, but that is left to future
work.

Before I present the results of the trial tasks, I will briefly
discuss the orientation again. The agent used does not include
the orientation reward. However, it still has access to all 6
DoF of the OSC input. To some degree, the agent learned
it could rotate the end effector to help achieve the desired
position, but the orientation is clearly not maintained nor does
it move to the rotational goal. This makes the tasks harder of
course, as it would be nice to meet specific rotational goals
while rotating the valve and the door handle. Additionally,
the Panda gripper is fairly wide, so gripping the door handle
can pose challenges under certain orientations of the grasp.
Interestingly, intervening in the action to set the orientation
input to the OSC to 0 does not effect the agent’s performance
much (but of course causes the orientation of the end effector
to remain constant). I don’t have quantitative results from
doing this, but in the few runs I did the agent seemed to
perform comparably to the un-meddled-with action.

A. Task Results

In addition to grasping and turning the valve, I created
another task with the valve: closing the gripper and using
the fingertips to push the valve through an arc. As you may
expect, this turned out to be much more forgiving of the lack of
orientation control and performed much better than the grasp
and turn.

Overall, both valve tasks seemed at least possible to com-
plete. During the door task, the robot really struggled to
effectively grasp the handle because the body of the gripper
collided with the door, preventing the fingers from wrapping
around the handle. That said, the door task looked similar to
the baseline I started with. The valve push was quite effective
at rotating the valve 90 degrees, while the grasp and turn
struggled overall but succeeded in a few trials. Videos of all
3 tasks are included in the supplemental material. The below
table shows the episodic return from trying each task 20 times.



Task Return Avg Return Std
Door 116.50 20.42

Valve Grasp 32.71 9.71
Valve Push 168.36 11.80

The tasks were not as successful as I had hoped, and Section
VI discusses potential improvements in detail. From the table,
you can clearly see the valve push task outperformed the
others, while the grasp and turn task struggled more than the
door.

VI. CONCLUSION AND FUTURE WORK

This is the most complex reinforcement learning challenge
I have done to date, and it really opened my eyes to the
difficulties in using machine learning with robotics. I ended
up removing or simplifying large components of the project,
namely controlling the orientation and using the F/T data in a
latent space. I know that lacking in these areas caused the task
performance to suffer, and I think with some fixes the method
could be quite good at completing the given tasks.

Besides the orientation problem, learning from contact with
the environment is something I wish I had done better. This
includes using the F/T data, but also interacting better with
the environment during training. During training, I made sure
to include regions that would bring the robot into contact
with the valve or table, but these weren’t very intelligent. For
instance, pushing against the table while trying to reach a point
under it is not similar to the contact required to smoothly
turn the valve or door handle. Additionally, the motion to
turn the valve is different than required to open a sliding
drawer, pick an object up, etc. Even when trying to train a
generalized agent to perform a wide variety of tasks, I think
there is benefit in trying to train with a lot of different task-like
environmental interactions. Something that could have helped
is training multiple sequential waypoints, and the transitions
between them. This starts to get close to training for individual
tasks, but having the agent try to move to specific waypoints
while grasping an object could have helped.

Stepping back from the details, I think it is reasonable
to question whether or not a model-free approach is the
correct way to accomplish AT execution. Classical controls
approaches exist to move a manipulator to a specific pose (in
fact Robosuite’s OSC is one such implementation). A very
good method may be to use such a control law, with a higher
level machine learning algorithm to set the impedance and
motion parameters of the controller. This would likely result
in a simpler system overall, that could be safer and faster to
learn: perfect qualities for deploying on real hardware.

The work presented in this report represents a fairly vanilla
reinforcement learning approach to solve the AT execution
problem, but it was always my intent to use this project to
explore machine learning approaches in this area and this
project was helpful in doing so.

REFERENCES

[1] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus
Correll. Reducing the barrier to entry of complex

robotic software: a moveit! case study. arXiv preprint
arXiv:1404.3785, 2014.

[2] Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan
Wen, and Fuchun Sun. Survey of imitation learning for
robotic manipulation. International Journal of Intelligent
Robotics and Applications, pages 1–8, 2019.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. arXiv preprint arXiv:1801.01290, 2018.

[4] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

[5] Stephen Hart, Paul Dinh, and Kim Hambuchen. Affor-
dance templates for shared robot control. 2014.

[6] Stephen Hart, Paul Dinh, and Kimberly Hambuchen.
The affordance template ros package for robot task
programming. In 2015 IEEE international conference
on robotics and automation (ICRA), pages 6227–6234.
IEEE, 2015.

[7] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam
Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhari-
wal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szy-
mon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[8] Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth
Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and
Jeannette Bohg. Making sense of vision and touch:
Self-supervised learning of multimodal representations
for contact-rich tasks. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8943–8950.
IEEE, 2019.

[9] Adam Pettinger, Cassidy Elliott, Pete Fan, and Mitch
Pryor. Reducing the teleoperator’s cognitive burden
for complex contact tasks using affordance primitives.
In International Conference on Intelligent Robots and
Systems (IROS), 2020.

[10] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In International conference on machine learning,
pages 1889–1897, 2015.

[11] Peng Song, Yueqing Yu, and Xuping Zhang. A tutorial
survey and comparison of impedance control on robotic
manipulation. Robotica, 37(5):801–836, 2019.

[12] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in
neural networks, 2020.

[13] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto
Martı́n-Martı́n. robosuite: A modular simulation frame-
work and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Related Work
	Affordance Templates

	Problem Setup
	Overview
	Task Descriptions
	Waypoint Pose Error

	Implementation Details
	Modified Environments
	Training Individual Actions
	Combining Rewards

	Experimental Results
	Task Results

	Conclusion and Future Work

