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Abstract—Soft Actor-Critic (SAC) is a state of the art off-
policy algorithm for deep reinforcement learning; however, little
exploration into a critical component of the algorithm, experience
replay, has taken place since its inception. Meanwhile, surveys
over experience replay strategies and hyperparameter settings
in deterministic algorithms such as DQN and DDPG have
lead to considerable improvements in algorithmic performance.
Due to the entropy in the objective of SAC, we believe some
strategies and parameters may perform differently than in these
previous studies. Therefore, in this work we explore hyperpa-
rameter settings and strategies for experience replay in SAC
on 8 environments, which include complex robotic manipulation
environments and understudied areas such as discrete action
spaces. We cover four of the most popular experience replay
strategies - vanilla experience replay (ER), prioritized experi-
ence replay (PER), hindsight experience replay (HER), and a
combination of priority and hindsight experience replay (PHER),
and analyze the common hyperparameter settings of batch sizes
ranging from 64 to 512 and buffer sizes ranging from 50,000 to
1,000,000. We compare the number of updates needed to solve
environments, the maximum average return, and the maximum
success rate achieved by our strategies and settings. Our results
indicate the best performing hyperparameters are larger batches
of 512 and smaller buffers of 50,000. For strategies, adding
priority (PER/PHER) does not perform significantly better in
any environment while HER is successful in goal environments
where sub-goals are easily achieved.

I. INTRODUCTION

Deep reinforcement learning has seen an explosion of
interest in recent years thanks to its success in games such
as Atari (Mnih et al. [13]) and Go (Silver et al. [19]). These
successes have largely been driven by model free methods.
One particular model free deep reinforcement learning algo-
rithm which has excelled in robotics applications is Soft Actor-
Critic (SAC) (Haarnoja et al. [8]; Haarnoja et al. [9]), which
has seen success in a number of continuous domains, including
the MuJoCo OpenAi Gym task suite. This success is largely
driven by the sample efficiency of SAC, as it is an off policy
algorithm, and the entropy term, which encourages exploration
and prevents convergence on sub-optimal policies.

Despite the success of SAC, there are several limitations to
the algorithm in practical robotic applications. First, discrete
action spaces, which are nontrivial due to high variance and
instability, often arise in robotics in the form of choices of
control modes, gear switching or digital outputs (Neunert et al.
[15]), and cannot be handled directly by the SAC algorithm
proposed in the original work. While there are existing efforts
to apply SAC to discrete domains such as Christodoulou [3],
little work has been done studying SAC under discrete action

settings outside of the Atari game suite.
Further, despite the improved sample efficiency over other

algorithms, SAC is still quite costly in deployment on robotics
and can fail to converge to solutions, especially in domains
with sparse rewards. To address this sample efficiency, many
modifications to experience replay have been proposed, such
as Prioritized Experience Replay (PER). This strategy, intro-
duced in Schaul et al. [18], uses TD-error to focus learning
on salient experiences. Another wildly popular alternative
uses an algorithm called Hindsight Experience Replay (HER)
(Andrychowicz et al. [1]) to relabel and learn from trajectories
which otherwise provide no useful learning experience due to
sparse rewards.

There has been some work such as Wan and Xu [21]
which investigates the comparative efficacy of these experi-
ence replay approaches; however, little work has investigated
robotic manipulation tasks, and to our knowledge no work
comparing experience replay methods has been applied to
SAC. SAC differs from prior algorithms in its maximum
entropy formulation; consequently, optimal replay strategies
and hyperparameters may differ from prior studies and could
provide immediate gains to algorithmic performance.

Hence, in this work we contribute 1) Analysis on experience
replay under the widest variety of environments to date.
Our study also includes novel goal formulations for classic
control environments of Mountain Car and two Robosuite
environments. 2) Comparison of the performance for four
of the most common experience replay strategies - vanilla
experience replay (ER), prioritized experience replay (PER),
hindsight experience replay (HER), and a combination of
priority and hindsight experience replay (PHER) in SAC and
maximum entropy reinforcement learning. We observe priority
methods (PER/PHER) are hindered by entropy, not performing
significantly better in any environment, while HER is only
successful in the sparse environments where a variety of goals
are easy to obtain. 3) Comparison of the learning speed, max-
imum return, and maximum success rate of hyperparameters
for experience replay, with batch sizes ranging from 64 to 512
and buffer sizes ranging from 50,000 to 1,000,000. Our results
demonstrate that, counter to common literature settings, the
best performing hyperparameters are larger batches of 512 and
smaller buffers of 50,000. While our results offer immediate
recommendations for robotic applications, they also suggest
more research into intrinsic motivation, exploration, and pri-
oritization are required to improve model-free reinforcement
learning algorithms.



II. LITERATURE REVIEW

A. Deep Reinforcement Learning and Soft Actor-Critic

Model free deep reinforcement learning has seen success
in a number of ground breaking applications including Atari
(Mnih et al. [13]), Go (Silver et al. [19]), and Traffic Control
(Gao et al. [7]). In robotics, SAC (Haarnoja et al. [9]) has
emerged as a state of the art algorithm due to its effectiveness
on the Mujoco test suite and real robotics; hence, in this work,
we propose to study this algorithm. However, SAC cannot be
applied to discrete settings as a result of the policy update rule.
To address this shortcoming, there are two approaches: alter
the policy update rules, as in Christodoulou [3], or modify the
discrete probability distribution from a categorical to a gumbel
softmax (Jang et al. [10]; Maddison et al. [12]), which is the
approach we use due to the compatibility with the continuous
setting’s update rules.

While quite efficient compared to other model free ap-
proaches, SAC is still sample inefficient compared to model
based approaches. There have been a number of attempts to
improve the efficiency of SAC (Raffin and Stulp [17];Wang
and Ross [22]). Ours falls under the class of improving
experience replay instead of the network itself. Unfortunately,
we do not examine experience replay approaches directly
engineered for SAC to enable comparison across other surveys
and due to time constraints.

B. Experience Replay

Since its introduction in literature, experience replay (Lin
[11]) has been an important aspect of model-free learning
algorithms, as explained in Mnih et al. [14]. While experience
replay enables models to learn from prior experiences, it is
incredibly naive and samples experience randomly. This led
to an insight in Schaul et al. [18] which introduced prioritized
experience replay (PER). The key insight was sampling should
prioritize experiences the model has the highest error on to
correct for the most egregious states. Another work, hindsight
experience replay (HER) (Andrychowicz et al. [1]) observed
prior experiences which result in no information about the
goal could be re-framed to provide information about the
sub-goal that was achieved instead. There are a number of
other experience replay modifications and expansions such
as experience replay optimization (ERO) (Zha et al. [23]),
combined experience replay (CER) (Zhang and Sutton [24]),
and many others (Foerster et al. [6]; Tampuu et al. [20];
Pellegrini et al. [16]), but HER and PER are by far the most
popular in literature; consequently we select them for study.

C. Comparative works

Due to the explosion of experience replay strategies, com-
parative work is vital. Zhang and Sutton [24] explored how
experience replay is affected by hyperparameter settings re-
lated to buffer size. Other works compares strategies directly
such as Wan and Xu [21] which compares learning speed
of CER, PER, and HER on DDPG and DQN. Fedus et al.
[5] elaborate by discussing variability in experience replay
over different reinforcement learning approaches, and focus

there efforts on analyzing Rainbow. However, no such work
to our knowledge compares as wide of a variety of strategies,
settings, and environments with experience replay, or on
stochastic algorithms, making our work novel in this regard.

III. ENVIRONMENTS AND DATA

In this section, we discuss the data and environments which
we use, listed in Table I. Environments are from OpenAI
Gym (Brockman et al. [2]) with the exception of the Panda
environments, which are from Robosuite (Zhu et al. [25]).
Thus, all robotic environments run on the Mujoco simulator.
We offer more discussion behind the use of different simulated
environments in Section III-C. We note for results in Section
V-A, we were only able to run one trail per strategy and
hyperparameter setting due to resource constraints. For results
in Section V-B, we ran three trails per strategy and environ-
ment, reporting the mean and standard deviation in graphs.
We selected learning steps based on how many episodes were
required to reach convergence or until learning stalled for
100,000 steps. For the remainder of this section, we provide a
brief introduction of each environment we use, as well as any
special formulations1 and why the environments were included
in this study.

A. Classic Control

We begin with 3 classic control environments to investigate
simple relationships and validate our models. We also inves-
tigate the performance differences in discrete and continuous
action SAC in this setting, as to our knowledge there are no
widely available discrete action robotic environment available.

1) CartPole-v1: CartPole-v1 is a task of balancing a pole
on a cart, with a reward of 1 for each step the pole is balanced.
Once the cart or pole deviates from a specified range too much,
the environment is considered failed and the episode ends.
Since there is no target state at any given timestep, we do
not formulate a goal version. This environment is the simplest
of our environments, and serves to demonstrate that SAC can
solve discrete environments with the Gubmel-Softmax. This
environment has also been used in other comparative works
(Wan and Xu [21]).

2) MountainCar-v0: MountainCar-v0 is a task of moving a
car from the bottom of two hills to a flag at the top of one of
the hills. This environment is incredibly difficult, as the agent
must act suboptimally in order to build momentum and reach
the flag position. A reward of -1 is given for each timestep
the goal is not reached in this one dimensional setup, and 0
when the flag is reached.

We modify this environment for HER by creating a ”goal”
version. This goal version has a single goal, G where G[0] is
the flag position and G[1] is the goal velocity for which the
car’s velocity must be greater than or equal to for success. G
is set following the values in the OpenAI Gym environment.
We assign a reward of -1 for each step the environment is not
solved, and 500 when the environment is solved successfully

1Novel goal environments available at https://github.com/Lucaskabela/
robot-learning-replay

https://github.com/Lucaskabela/robot-learning-replay
https://github.com/Lucaskabela/robot-learning-replay


# Observations # Controls Control Type Solved Score Horizon Learning Steps Goal Compatible Goal Dim
CartPole-v1 4 2 Discrete 475 500 100,000 No –

MountainCar-v0 2 3 Discrete -110 200 200,000 Yes 2
MountainCarContinuous-v0 2 1 Continuous 90 999 200,000 Yes 2

HalfCheetah-v2 17 6 Continuous 4800 1000 1,000,000 No –
FetchPush-v1 25 4 Continuous – 50 1,000,000 Yes 3

FetchPickAndPlace-v1 25 4 Continuous – 50 1,000,000 Yes 3
PandaPickAndPlaceCan 46 7 Continuous – 50 250,000 Yes 3

PandaDoor 46 7 Continuous – 500 250,000 Yes 1

TABLE I: Environment Details

- this value is much greater than 0 to encourage the agent to
remember the optimal trajectory.

3) MountainCarContinuous-v0: MountainCarContinuous-
v0 is the continuous analog of MountainCar-v0; however,
actions are the amount of energy to apply in a given direction
and thus the reward in this environment is −|a|2 or 100 for
solving the environment by default.

We again formulate a ”goal” version, which is identical to
the discrete version mentioned above. We use a slightly smaller
reward scale of 200 for success in the continuous setting, since
the time horizon is 999 steps instead of 200.

We include the mountain car environments to compare
discrete and continuous action spaces, as this is one of the
only environments in OpenAI gym which has a discrete and
continuous analog.

B. Mujoco (Locomotion)

1) HalfCheetah-v2: HalfCheetah-v2 is our first environ-
ment using Mujoco, and is tasked with learning a locomotion
policy for the HalfCheetah. The reward is once more related
to the energy expended for locomotion. We include this envi-
ronment as it has been heavily studied in the SAC literature,
but we do not formulate a goal version, as there is not a target
state the robot needs to achieve to learn a policy for walking,
which is similar to the constraints preventing formulation in
CartPole-v1.

C. Mujoco Robotic Manipulation

Due to the lack of robotics environments in comparative
experience replay literature, we also evaluate on 4 robotic
manipulation environments. We begin with two environments
from OpenAi Gym which have been heavily studied in HER
literature and use the Fetch robot arm. We further include two
more rigorous formulations using the Panda robot arm from
Robosuite to stress test our algorithms.

1) FetchPush-v1: FetchPush-v1 requires the Fetch arm to
push a puck to a designated point on a table, which is a 3D
point and serves as the goal. There is a reward of -1 for each
timestep the goal is not reached, and 0 once it has been. This
environment is more difficult than the naive FetchReach-v1,
so allows for comparison between techniques, but is still easy
enough to learn policies for naive ER. Hence, this environment
serves as our robotic manipulation baseline.

2) FetchPickAndPlace-v1: FetchPickAndPlace-v1 requires
the Fetch arm to pick up a block and move it to a designated
point in 3D space, which serves as the goal. The environment

rewards -1 for each timestep the goal is not reached, and 0
when it is reached. We choose this environment to have an
analog to our PandaPickAndPlaceCan environment in Robo-
suite and compare across robots and simulators.

3) PandaPickAndPlaceCan: PandaPickAndPlaceCan is
adapted from PickPlaceCan in Robosuite, and requires the
panda robot arm to grasp a can and drop it into a designated
bin. Thus it is not directly comparable to FetchPickAndPlace-
v1; however, similar skills must be learned to solve the task.
We use the controller, environment settings, and number of
learning updates from the benchmarking suite. We modify
the Robosuite gym wrapper by adding a goal, which is the
3D coordinates of the box which the robot must drop the
can into. To better match FetchPickAndPlace, we limit the
time horizon to 50 steps, and use the sparse rewards from
Robosuite.

4) PandaDoor: PandaDoor uses the Door environment
from Robosuite, and requires the panda robot arm to open
a randomly initialized door. We use the dense and sparse
rewards specified by Robosuite to compare performance under
the density of rewards. Unlike the other manipulation envi-
ronments, we use a 500 timestep horizon. The environment
settings and number of learning updates are consistent with
Robosuite benchmarking. For our goal formulation, we only
specify the hinge degree of the door, as this is how the reward
was computed in Robosuite. Note, as we observe in Section
V-B, this goal does not take into account the position of the
door and is thus a naive representation.

IV. ARCHITECTURE AND EXPERIENCE REPLAY

A. Model Architecture: SAC

1) Continuous Settings: Our implementation of SAC fol-
lows Haarnoja et al. [9]. We chose to study this algorithm
as opposed to other maximum entropy algorithms due to its
strong results in robotic applications and its popularity. We
re-implemented the algorithm from the paper, and compared
to the implementation from RLKit 2 noting there was not a
significant difference in results. We thus used RLKit’s im-
plementation to provide a standard implementation for future
works. We further hold the hyperparameters of the network
constant across environments, as reported in the supplementary
materials. These hyperparameters were selected due to the
frequency with which we observed them in related works
and to allow generalization to the variety in difficulty of our

2https://github.com/vitchyr/rlkit

https://github.com/vitchyr/rlkit


environments . For background on the reinforcement learning
setup of SAC, see Haarnoja et al. [9] and supplementary
materials.

2) Discrete Settings: For SAC in discrete action spaces,
we implement the Gumbel Softmax as opposed to the policy
update modifications in Christodoulou [3]. This is done to
keep the learning algorithms similar between discrete and
continuous settings, as only the distribution sampled from
needs to change. Following the approach in Jang et al. [10]
and Maddison et al. [12], we extend the RelaxedOneHotCate-
gorical distribution in Pytorch. We reproduce the formulation
here for completeness:

Suppose we have action probabilities: π1, π2, ..., πk. We can
then draw samples z:

z = one hot(arg maxi[gi + log(πi)]) (1)

where g1, ..., gk are i.i.d samples drawn from Gumbel(0, 1).
To provide a differentiable, continuous approximation, we use
softmax in place of argmax and generate k sample vectors, y
where

yi =
exp((gi + log(πi))/τ)∑k
j=1 exp((gj + log(πj))/τ

(2)

where τ is a temperature parameter, chosen to control the
flatness of the gumbel softmax. Putting this all together, the
density function is

pπ,τ (y1, ..., yk) = Γ(k)τk−1(

k∑
i=1

πi/y
τ
i )−kΠk

i=1(πi/y
τ+1
i )

(3)

B. Experience Replay

For our strategies, we use four of the most common ex-
perience replay strategies. While we acknowledge there are a
wealth of strategies, some specially engineered for the maxi-
mum entropy frameworks such as Wang and Ross [22], we do
not have the resources to exhaustively test such strategies. We
further use common hyperparameter values from literature, as
we do not have resources to perform tuning and such values
have been shown to perform well.

1) Experience Replay: Experience replay (ER) serves
as a baseline and samples uniformly from all experience,
(s, a, s′, r, d) in the buffer, D. This approach is naive in that it
treats all experience equally, but it still provides strong results
in many environments.

2) Prioritized Experience Replay: Our implementation of
PER follows from Schaul et al. [18], and is based off OpenAI
baselines (Dhariwal et al. [4]) with minor modifications.
Suppose the buffer has N elements. Using a segment tree
to store our priorities all operations are O(log(N)), which is
the best complexity found for this approach. Under SAC, the
TD-Error of a sample, |δ|, is defined as the average TD-Error
per Q network, or

|δ| = 1

2

2∑
t=1

|r + γVφtarg
(s′)−Qθ,t(s, a)| (4)

When initially added to a buffer, we assign the priority, pi,
for experience i to be the maximum priority currently in the
buffer. After an update step on the other hand, pi is assigned
to |δ|. The probability for which experience i is sampled is
then

P (i) =
pαi∑N
j=0 p

α
j

(5)

However, this leads to bias which needs to be corrected with
importance sampling. The correction term we use for sample
i is:

wi = (
1

N
· 1

P (i)
)β (6)

Prior work such as Wan and Xu [21] has found PER to
outperform ER in most settings. However, PER has to our
knowledge primarily been applied to deterministic algorithms,
and even then does not have strong results. As such, we
theorize that PER will not provide much improvements over
ER, but may still offer some advantages to learning, especially
in discrete settings where the strategy was initially studied.

3) Hindsight Experience Replay: Our implementation of
HER follows closely from Andrychowicz et al. [1], and is
based off the implementation in RLKit. A hard requirement
of HER is that environments be goal environments. Goal en-
vironments, in addition to the observation, return an achieved
goal and desired goal as part of the state. Thus, an episode
can be captured as

(S0, G, a0, r0, S1), ..., (Sn, G, an, rn, S
′) (7)

Where G is the desired goal, and S’ is the achieved goal. Under
our implementation of HER, with probability 1/k we replace
the desired goal, G, with the achieved goal of a trajectory, S’
when sampling from D. Thus, the trajectory will be relabeled,
with probability 1/k and where c() is function to compute
rewards from a desired and achieved goal:

(S0, S
′, a0, c(S

′, S1), S1), ..., (Sn, S
′, an, c(S

′, S′), S′) (8)

In this way, HER serves as a form of implicit curriculum learn-
ing. HER is included as it has shown to achieve remarkable
success in sparse reward robotics environments, but has mostly
been studied under deterministic networks in well formulated
environments. In this study, we stretch the limits of HER by
experimenting with a stochastic algorithm, SAC, and with the
ability of the environment to make partial progress through
achieved goals.

4) Prioritized Hindsight Experience Replay: This approach
combines the previous two strategies by assigning priority
to trajectories using the sum of TD-Errors. We include this
strategy to evaluate how well combinations of the most popular
strategies can do.

V. EXPERIMENTAL RESULTS

We now introduce our experimental results, starting with
our hyperparameter ablation study, as it motivates the settings
of hyperparameters for our main experiments. Average values
are reported over 100 steps unless noted otherwise.



A. Replay Buffer Settings

To begin, we evaluate the common hyperparameters, which
are buffer size and batch size, on representative environments
from each category of classic, locomotion, and manipulation
environments. For environments where it is computationally
feasible, we vary buffer size on an exponential scale from 26 to
29, and buffer size over {50,000, 100,00, 500,000, 1,000,000}.
For environments which took more than 4 hours to run (Half-
Cheetah and FetchPush-v1), we only evaluate the extreme
values of these ranges. The limited number of environments
and settings is an unfortunate restriction of our computational
resources.

Here we provide the results on FetchPush-v1, as this
environment was complex enough to offer differences in
settings and justifies our hyperparameter values for robotic
manipulation environments. More results are provided in the
supplementary material.

64 512
50,000 -39.5‖-39.8‖-21.4‖-22.9 -38.2‖-38.8‖-17.3‖-18.3

1,000,000 -40.6‖-41.3‖-24.1‖-23.4 -39.9‖-39.1‖-18.0‖-18.5

(a) Max average return

64 512
50,000 .13‖.12‖.57‖.55 .14‖.13‖.69‖.67

1,000,000 .11‖.11‖.52‖.53 .13‖.13‖.67‖.66

(b) Max average success rate

64 512
50,000 369‖216‖256‖198 366‖281‖152‖124

1,000,000 372‖259‖325‖223 428‖315‖277‖235

(c) Updates (in thousands) to solve >.1 average success rate

TABLE II: Buffer vs batch sizes on FetchPush-v1 over 1
million learning updates [ER‖PER‖HER‖PHER]

We observe the best results for most settings occurs with
a batch size of 512 and a buffer size of 50,000. Under
larger batch sizes, variance is reduced, leading to more stable
learning, while computation is only marginally slower. On the
other hand, the small buffer size keeps the experiences sampled
relevant to the current policy, as they are more recent, thus
more likely to be encountered. Even with a smaller size of
50,000, the buffer can hold 50 episodes or more for our longest
horizon environment. Of all our environments, CartPole-v1
was the only setting we found this trend did not hold, with
no discernible values performing best. We believe this is a
result of the simplicity of the environment and thus influence
of noise in results as there was not significant differences in
the performance of any strategy.

B. Results on Robotic Environments

In this section, we visualize the mean and standard deviation
of three trails of our best performing hyperparameters on each
strategy.

1) Non-Goal Environments: Beginning with the non-goal
environments, in Figure 1, we notice PER initially learns faster
than ER, as predicted. However, counter to our expectations,

as we increased the number of learning steps, PER begins
to perform worse than ER. We believe this to be a result
of the interaction of priority and entropy - the exploration
encouraged by entropy adds many states to the buffer which
do not maximize rewards, especially compared to deterministic
algorithms. Therefore, priority based on TD-Error may over-
incentivize updating sub-optimal states. These results suggest
for maximum entropy reinforcement learning algorithms such
as SAC, priority is too costly - adding O(log(N)) complexity
- for little performance gain.

2) Discrete vs. Continuous: MountainCar: Next, we com-
pare the performance on MountainCar environments in Fig-
ure 2. Interestingly, the success rate skyrockets initially but
plateaus to 0 after a moderate amount of learning. Examining
our sampled goals, we discovered the velocity term, G[1]
was the cause of poor learning, as the cart needed to have
velocity greater than this term to be considered successful
under the compute_reward (c()) function used for learning.
We recommend future versions of this goal environment drop
the velocity term, as it is 0 in the non-goal Gym environment.
Our results also show continuous settings have a sharper
peak, or better performance than discrete action spaces, which
we attribute to the gumbel-softmax reshaping the categorical
through approximation. Thus, while SAC is shown to perform
better in continuous environments, we believe this comparison
demonstrates SAC is capable of solving non-trivial discrete
action spaces.

3) Robotic Manipulation Environments: We finally investi-
gated our robotic manipulation settings in Figure 3. Beginning
with FetchPush-v1, we found that ER and PER were unable
to make much progress on the environment, but due to its
simplicity, they were able to solve about 10% of episodes.
Adding hindsight rocketed success rates to near 60%, in-
dicating the strength of the method in solving simple goal
environments. FetchPickAndPlace-v1 had similar results, with
a slightly lower success rate as the environment is harder.

On the other hand, PandaPickAndPlaceCan had much worse
performance, and none of our strategies were able the solve
the environment. After examining the learned policy, it was
apparent that the signal was too sparse for learning - the hand
never was able to learn the sequence of picking up the object
and dropping it, and it frequently stalled before the gripper
picked up the can. This resulted in no goals other than the zero
state achieved, leading to relabeling being ineffective which
reduced HER to ER.

PandaDoor with sparse rewards struggled with similar is-
sues. In the sparse setting, no learning took place, as the
door hinge was never opened by any amount, despite the
gripper sometimes making contact with the handle as opening
the door involved a complex sequence of finding the handle,
torque, and forward force. However, the dense rewards, which
captured this sequence, were able to lead to strong results for
all methods. HER and PHER were actually out performed by
ER and PER in this dense setting, which we believe to be a
result of the dense rewards being designed for the environment,
and thus a better source of learning than relabeling.



(a) Performance of CartPole-v1 over 100,000 learning steps (b) Performance of HalfCheetah-v2 over 1,000,000 learning steps

Fig. 1: Evaluating Average Returns of ER, PER on environments without goals

(a) Performance of MountainCar-v0 (+ Goal) over 200,000 learning
steps (b) Performance of MountainCarContinuous-v0 (+ Goal) over 200,000

learning steps

Fig. 2: Evaluating Average Success Rate of ER, PER, HER, and PHER strategies on MountainCar environments. ER/PER
achieved a success rate of 0 regardless of which formulation was used.

VI. DISCUSSION AND LIMITATIONS

A. Comparison to prior surveys

In Table III we provide the results of Wan and Xu [21],
which surveyed replay strategies on DQN3. The results indi-
cate SAC-D is much better at solving discrete action environ-
ments, as we are able to solve CartPole-v1 in around 60,000
learning steps or 200 episodes4 and reached good performance
on MountainCar-v0 in around 250 episodes, although our
policy did not converge. Also worth noting is our results are
somewhat echoed here - HER learns much more efficiently

3We do not report learning speed in episodes as episodes are variable
lengths in environments such as CartPole

4From dividing number of learning steps by maximum episode length

than ER in goal environments, while PER does not outperform
ER significantly. Our work however differs by investigating
more complex environments, continuous spaces, and SAC.

Strategy CartPole-v0 MountainCar-v0
ER 4000 33000

PER 4000 –
HER – 15500

PHER – –

TABLE III: Episodes to Converge from Wan and Xu [21]

B. Computation Resources

In terms of computation, we were limited to running on
2 CPUs due to Mujoco keys. This limited us to one run for



(a) Average Success Rate of FetchPush-v1
over 1,000,000 learning steps

(b) Average Success Rate of
FetchPickAndPlace-v1 over 1,000,000
learning steps

(c) Average Success Rate of PandaPickAnd-
PlaceCan over 250,000 learning steps

(d) Average Success Rate of
PandaDoor(Sparse) over 250,000 learning
steps

(e) Average Success Rate of
PandaDoor(Dense) over 250,000 learning
steps

Fig. 3: Evaluating Average Success Rates of ER, PER, HER, and PHER on goal environments

each trail of our hyperparameter study, so noise could have
contributed to our results. Another issue is our number of
learning steps were limited from resources, which means we
did not perform extremely long trails. Prior works (Zhang and
Sutton [24]) have indicated the performance of smaller buffer
sizes falls off as the number of learning update steps increases,
but we did not observe this for the number of updates we
investigated.

Further, we did not experiment with SAC specific strategies,
which is a significant shortcoming as such strategies are
likely to achieve higher success rates. We finally did not
perform hyperparameter tuning, instead opting to select static
parameters which were common in literature. Future work
should take care to first search for optimal hyperparameters
for the network and strategies, then proceed with investigating
performance and ablating over select parameters.

C. Failure modes and Future Work

We believe that PER performed poorly with SAC due to the
entropy objective, as SAC takes many sub-optimal actions due
to entropy with potentially large TD-Errors. This could par-
tially explain the slowed learning of PER as steps increased, as
high error states affected convergence. We also noted several
environments HER did not learn in. Error analysis revealed
in such cases HER never reached a goal other than the zero
state, reducing HER to ER and indicating a need for better goal
formulation. Finally, our tuning did not drastically positively

affect runtime or learning. This, in conjunction with our two
failure modes, lead us to a recommendation for stronger forms
of prioritization, curriculum, and intrinsic exploration, as it is
evident in some environments, weakly formulated goals and
TD-Error priority may not provide enough signal to improve
learning or cause convergence.

VII. CONCLUSION

Inspired by research in deterministic settings such as DQN
and DDPG which has demonstrated that varying buffer hy-
perparameters and strategies improves learning, we perform
a similar survey with SAC in 8 environments. Our findings
show larger batch sizes of 512 and smaller buffer sizes of
50,000 perform best in learning speed and maximum return.
We then ran our best settings with each strategy in our
environments and observe that continuous settings with dense
rewards are easiest to learn, while environments with difficult
to achieve goals and sparse rewards can lead to a failure to
learn, even for HER. Further, we find priority is ineffective
in SAC as a whole. We hope future research can use our
strategies and parameters recommended here, and that this
work motivates greater exploration into prioritization, implicit
curriculum learning, and intrinsic motivation to drastically
improve experience replay.
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