
Object Centric Approach to Motion Prediction for
Autonomous Vehicles

Prakhar Singh*
Dept. of Computer Science

University of Texas at Austin
prakharsingh95@gmail.com

Shivam Garg*
Dept. of Computer Science

University of Texas at Austin
shivgarg@live.com

Abstract—In this work, we explore whether an object centric
approach can help improve performance for the motion predic-
tion task. Our approach extracts features from dense feature
maps of ResNet-34 using RoIAlign followed by a suitable ag-
gregation strategy. Our results demonstrate a 20% improvement
over Lyft’s baseline. We also conduct thorough ablation studies
of various hyper-parameters specifc to our approach and find
that bounding box size, object count, multi-trajectory prediction
have substantial impact on performance.

I. INTRODUCTION

Autonomous driving systems involve three major compo-
nents: Perception, Prediction and Planning. Perception in-
volves utilizing multiple modalities to understand the envi-
ronment and the various objects in it. Prediction involves
estimating the future behaviour of these objects and finally
planning involves utilizing the information gleaned through
prediction and planning to make intelligent decisions.

In this project, our focus is on the second component,
prediction. Given data collected by an autonomous vehicle, the
goal is to predict the behaviour of nearby traffic participants
for 50 future timesteps (0.1 seconds/step). This project is
inspired by the recent Kaggle competition1 by Lyft. As such,
we utilize their data and problem formulation of the motion
prediction task. Our key contribution is an object centric model
architecture to solve this problem.

More specifically, the problem asks us, given 99 historical
frames containing motion data of various agents like cars,
motorcycles, pedestrians, etc along with a rasterized Bird’s
Eye View (BEV) map of the environment, to predict the
future positions of these agents 50 frames into the future. The
prediction can include upto 3 trajectories for each agent along
with accompanying confidence scores c (with

∑3
i=1 ci = 1).

The evaluation metric is the negative log likelihood of the true
trajectory under a Gaussian distribution centered at the pre-
dicted trajectory (we describe it in detail in subsection IV-A).

Our approach to this problem is motivated by the idea that
immediate future motion of any agent is highly influenced by
the motion of nearby objects in the scene. To exploit this idea,
we modify Lyft’s baseline approach (see subsection III-A) to
extract feature maps of objects nearby the object of interest
using RoIAlign [3]. We then evaluate various architectures

1https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles

to aggregate information from all extracted feature maps fol-
lowed by two heads that predict the trajectory and confidence
scores.

We consider various aggregation strategies like averag-
ing, LSTMs, GraphCNNs, etc. Surprisingly, we found that
averaging the feature maps works the best rather than the
more involved approaches. Our best result improves upon the
baseline by more than 20% given the same number of gradient
updates. In addition, we conduct extensive ablation studies
to understand the effect of various architecture and hyper-
parameter choices (like region sizes, pooled sizes, etc). We
find that increasing the number of agents considered is very
helpful and filtering out certain agents, as in Lyft’s baseline,
harms performance.

The rest of this report is organized as follows. In section II
we describe the data in detail. We also highlight some key
optimizations we made to achieve a improve our dataloader
performance which is what each our our experiments is
bottlenecked by. In section III we describe our methodology in
detail and in particular focus on how we process the extracted
object features. We report our main results, our ablation studies
in section IV. We briefly list some releavnt prior work in
section V and finally conclude in section VI.

We have attached our code along with this report. Please
see README.md in the attached code for details.

II. DATA

A. Data Format

We use Lyft Motion Prediction Dataset[4] in this work.
The dataset has 170k scenes of 25 seconds duration each, in
total having approx. 1,118 hours of driving logs. There are on
average 79 traffic agents in each frame with a total of about
320M agents. The data has been captured during day time
and post processed to provide road geometry and aerial map
information.

The dataset is organized in three arrays:
• The first array contains information about scenes. Each

scene is composed of a sequence of frames.
• The second array contains information about frames,

where each frame contains information of the environ-
ment at any particular step. It contains information about
all the agents present in the frame alongwith all the

https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles

(a) Object to track (1
channel).

(b) Nearby objects (1
channel).

(c) BEV Raster (3
channels).

Fig. 1: Rasterized agent, object and BEV channels.

recognised traffic light faces. The frame also contains the
AV’s translation and rotation matrices to transfer between
various coordinate spaces.

• The third array contains information about each agent: its
centroid, extent, yaw, velocity and agent type.

B. Data Extraction Process

In this work, we rely on agent centered views of the
environment to predict the agent’s future trajectory (similar
to Lyft’s baseline). We leverage Lyft’s l5kit2 to extract the
following information for each agent:

• Agent centered rasterized BEV map
• Immediate preceding 10 positions of the focus agent. This

information is plotted on a 2D map, one for each time
step.

• Immediate preceding 10 positions of other agents in the
scene, again for each time step.

• A mask denoting the class the traffic the agent belongs
to. This is derived from a probability distribution over
all the classes the agent could be belong to available as
part of the dataset. The threshold we use to binarize this
distribution is 0.5.

• The ground truth trajectory for upto 50 steps in the future.
A sample instance is shown in Figure 1. The BEV map is
concatenated with all the 2D maps for each of the historical
timesteps for both the focus and surrounding agents.

C. Dataloader Optimization

One of our biggest implementation challenges in this project
relates to the dataloader. Specifically, in all our experiments
the training was CPU bottlenecked due to the dataloader.

This problem was further exacerbated when we imple-
mented object bounding box extraction. We found that training
slowed down by 2.4× which was significant as we were
already looking at long training times even with the standard
dataloader.

We spent significant time investigating Lyft’s code under-
lying their API and identified some key Lyft APIs that were
causing the additional slowdown. Specifically we identified
that a binary search operation on all 320M agents and

2https://github.com/lyft/l5kit

a method call AgentDataset.get_frame_indices()
were the worst offenders.

We refactored those out and utilized the raw ZARR data
to extract object information. This resulted in significant
implementation effort but resulted in us getting rid of the 2.4×
slowdown. This optimization was key to us being able to test
significantly more hypotheses.

III. METHODOLOGY

A. Baseline

We consider Lyft’s approach as the baseline. In this ap-
proach, the rasterized BEV map and and spatial rendering of
objects (based on their current and historical positions) on a
(224, 244) image is input to ResNet-34. Then, they replace the
final classification layer with a FC layer for feature extraction
which is then used to predict the agent’s future trajectory.
Specifically, the output is a (50, 2) vector corresponding to
its predicted (x, y) positions (in its own coordinate space)
50 steps in future. This model is optimised using MSE loss
between the predicted and the ground truth trajectories.

B. Preliminaries

The focus of this project is to explore object centric features
to improve upon the baseline. Our approach is motivated by
the hypothesis that an agent’s motion is significantly informed
by the motion of its nearby agents. We treat each agent in the
sence as an “object”.

Before we describe our approach in detail in subsec-
tion III-C, we describe some key details upon which we build
our approach.

1) Agents Representation: For each object, we extract a
representative feature map using RoIAlign from stage 4 of
ResNet-34 using fixed bounding boxes of size (w,w) centered
on the objects. The output of the RoIAlign layer for each
object is determined by the ResNet backbone. For ResNet-
34, it (p, p, 512) where p is the pooled size for RoIAlign. We
study the effect of bounding box size w and pooled size p in
our ablation studies as discussed in subsubsection IV-D1 and
subsubsection IV-D2.

(a) Averaging aggregation.

(b) Averaging aggregation with transformation first.

(c) LSTM Aggregation

(d) Dynamic Graph CNN Aggregation

Fig. 2: Overview of the key architectures that we consider in this project. “ResNet-34” denotes the stage 4 output from
Resnet-34.

2) Agent Selection: Considering that there are multiple
objects (“agents”) in any given scene, we try two methods
of selecting agents to extract features for and process further
based on two criteria:

• Agent Masks: For this criteria we explore two choices,
one where we take all the agents present in the scene
and another when we filter agents based on the agents
masks (see subsection II-B). See subsubsection IV-D3 for
experimental results.

• Distance from the focus agent: We choose N agents
which are closer to the focus agent where N is a hyper-
parameter. We explore the impact of various choices of
N in subsubsection IV-D4 .

3) Multi-Trajectory Prediction: The task setup allows pre-
dicting upto K = 3 trajectories. We employ two setups in our
experiments, one in which we predict a single trajectory and
another where we predict three candidate trajectory along with
confidence scores for each trajectory.

In the multiple-trajectory setting, we have three heads, one
for each trajectory and another head to predict the confidence
of each trajectory We refer to these as Pos. FC and Conf.
FC respectively. The effect of predicting multiple trajectories
is discussed in subsection IV-E.

C. Our Approach

1) Feature Aggregation: This is our first line of experiments
where we aggregate agent’s features by averaging RoIAlign
features. Specifically, we bisect ResNet-34 at the end of stage
4 and apply an RoI Align layer to extract object (“agent”)
specific feature maps. These feature maps are aggregated into
a single feature map using average pooling. This aggregated
representation is passed through a FC and finally into the
prediction heads. Refer to Figure 2a for block diagram of the
approach.

2) Averaging Feature Aggregation: We also experiment
with a slight variation to this approach where we extract
feature maps from ResNet-34 stage 4 using RoI Align but
instead of aggregating feature maps directly, we instead apply
a transformation (a FC layer) first and then aggregate. Refer
to Figure 2b for block diagram of the approach.

3) Integrating Label Information: The dataset provides the
type label for each agent, e.g. car, bicycle, pedestrian etc. Apart
from using this for filtering purposes (as in the baseline), we
also experiment by appending information to the RoI features
maps. The is motivated by the observation that different traffic
agents behave differently, e.g. bicycles usually have lower
speeds than cars, pedestrians have lower speeds than bicycles
and usually stay off-road, etc. Refer to subsection IV-F for
results.

4) LSTM Feature Aggregation: In this experiment, instead
of average pooling the RoI feature maps, we instead aggregate
the feature maps using LSTM. Specifically, LSTM processes
feature representations from all agents in the scene and,
ideally, learns relevant information about how the motion of
nearby agents affects the motion of the focus agent.

Fig. 3: Our implementation of Dynamic Graph CNN.

We pass the RoI features directly into a stacked LSTM and
use the hidden state representation at the last LSTM step to
predict trajectories and confidence values.

The schematic diagram of the approach is shown in Fig-
ure 2c. This approach is inspired from Zhang et al. [17] where
they also pass features from regions of interest directly to an
LSTM for image classification.

5) Dynamic GraphCNN Based Aggregation: In this ap-
proach, we utilize Dynamic Graph CNN[13] for aggregating
RoIAlign features. This is motivated by the observation that
nearby agents should be assigned more weight considering that
the BEV map covers a large area (112×112 sqm), as opposed
to assigning uniform weight to all agents in the scene like the
previous approaches would do.

Specifically, we again extract features from ResNet-34 stage
4 using RoIAlign and apply four layers of Dynamic Graph
CNN. Inside each layer, we onstruct an undirected graph
using a k nearest neighbour approach. We apply EdgeConv
operation on all the nodes to generate neighbour contextualised
representation for each node and average the edge features at
each node to compute node features.

We describe the Dynamic Graph CNN operation visually
in Figure 3. Following the Dynamic Graph CNN layers,
average pool the representations for all nodes and predict
trajectories and confidence scores. The overall approach is
shown schematically in Figure 2d.

6) Recurrent Prediction: In all the previously described
approaches, we predict the next 50 steps in one go, i.e. there is
no dependence of position at t+ 1 step on the positions from
1 to tth time steps. We also try a recurrent motion prediction
approach which predicts motion for only a few steps into the
future repeatedly. This approach performed poorly by a large
margin despite our various attempts. As a result, we discarded
this approach altogether.

IV. EXPERIMENTS

A. Metric

The evaluation metric is the negative log likelihood of the
true trajectory under a Gaussian distribution centered at the
predicted trajectory. Specifically, the density model assumes all
predictions are i.i.d and the overall distribution is expressed as
a product of unit Gaussians centered at the predicted positions
(note that centering the Gaussians at the target positions and
computing the likelihood of the predicted trajectory will yield
identical results).

150k 180k 210k

Baseline 55.0 47.5 47.5

Averaging 43.4 38.2 38.2
LSTM 86.5 74.3 64.7
Dynamic Graph CNN 61.7 58.9 54.2

TABLE I: Comparison of different object feature aggregation
strategies.

Mathematically, given the ground truth trajectory
x1,, xT , y1,yT and k predicted trajectories
(1 ≤ k ≤ 3), x̄k1 ,x̄

k
T , ȳ

k
1 ,ȳ

k
T , the density model,

which assumes spatial and temporal independence, is defined
as:

p(x1...T , y1,,,T |c1....K , x̄1,...K
1,...T , ȳ

1,...K
1,...T)

=
∑
k

ckN (x1,....T |x̄k1,...T ,Σ = 1)N (y1,....T |ȳk1,...T ,Σ = 1)

=
∑
k

ck
∏
t

N (xt|x̄kt , σ = 1)N (yt|ȳkt , σ = 1)

(1)
The final score then is the negative log of the true trajectory
given the above density model:

L = − log p(x1...T , y1,,,T |c1....K , x̄1,...K
1,...T , ȳ

1,...K
1,...T)

= − log
∑
k

elog(ck)− 1
2

∑
t((x̄

k
t −xt)

2+(ȳk
t −yt)

2) (2)

Here ck refers to the predicted condidence for the k-th
trajectory. Only predictions where 0 ≤ ck ≤ 1 for all k and∑

k c
k = 1 are considered valid.

B. Training Details

We train each model for up to 210, 000 gradient steps. For
optimization, we use Adam [7] with a learning rate of 1e− 3
and linearly decay the learning rate in such a fashion that the
learning rate would reach zero in two epochs (in practice the
dataset is too big to finish even one epoch). We use a warmup
of 500 steps. We train with a batch size of 16.

We use the NLL metric described in subsection IV-A as
our loss as this metric is fully differentiable. During the
NLL implementation in PyTorch, we faced numerical stability
issues due to the various softmax, log and exp operations
where we observed that the loss would NaN out after some
number of gradient updates. We addressed this by switching
to log_softmax and logsumexp where we always work
with log probabilities.

C. Comparing Aggregation Methods

Our overall results comparing the different aggregation
methods are available in Table I. We find that the averaging the
RoIAlign features works best and significantly outperforms all
the other aggregation approaches we considered. In particular,
we notice that it takes a large number of gradient updates
before the loss starts decreasing when LSTM aggregation is
used. We hypothesize that this is a consequence of permutation

150k 150k 210k

RoI Region: (7, 7) 47.7 46.1 46.1
RoI Region: (13, 13) 47.2 46.3 45.8
RoI Region: (24, 24)* 54.9 50.8 46.6

TABLE II: Comparison of different RoI region sizes with
averaging aggregation.

150k 150k 210k

RoI Pool Size: (1, 1)* 54.9 50.8 46.6
RoI Pool Size: (3, 3) 65.0 62.4 62.4

TABLE III: Comparison of different RoI pool sizes with
averaging aggregation.

invariant features being hard to learn. Surprisingly, averaging
also outperforms Dynamic Graph CNN based aggregation.

D. Ablation Studies

In this subsection, we take the overall best performing
architecture - averaging aggregation - and present results for
various ablation studies through which we ascertain the impact
of different hyper-parameters. We limit our ablation studies to
hyper-parameters specific to our proposed architecture.

Specifically, we use the following settings as reference for
all the following ablation studies:

• RoI Region Size: (24, 24) (w.r.t. input image size)
• RoI Pooled (Region) Size: (1, 1)
• RoI sampling ratio: 2
• Num of objects considered: 12
• Object Masking: Yes (this is the same setting as Lyft’s

baseline, see subsection III-A)
Please note that while this reference setting outperforms

Lyft’s baseline, this is not the one that yields the best results
in Table I. This is because we conducted these ablation studies
towards the end of the project and one of these studies ended
up improving our best result.

1) Effect of RoI Region Size: Table II shows the results for
RoI Region size ablation. By RoI region size, we refer to the
bounding box used in the RoIAlign operation. We find that the
best region size is (13, 13) and both smaller (7, 7) and bigger
(24, 24) region sizes yield poorer results. We hypothesize that
the loss in performance due to the bigger sizes is because of
noisy information from the feature map being averaged in by
RoIAlign while we attribute the loss in performance due to
the smaller size to useful agent features being missed out.

2) Effect of RoI Pooling Size: Table III shows the results
for RoI Pooling size ablation. By RoI pooling size, we refer
to the size of the pooled features post the RoIAlign operation.
For (1, 1) pooling the object feature size is 512. For (3, 3)
pooling, we flatten the features along the channel dimension
resulting in object features of size 4608. We find that (1, 1)
works better despite the lower feature size.

3) Effect of Object Masking: As we discussed in subsec-
tion II-B, the dataset has mask representing objects’ classes,
e.g. cars. In this ablation study, we study the effect of keeping

150k 150k 210k

With mask* 54.9 50.8 46.6
No mask 46.4 41.5 39.8

TABLE IV: Comparison of object masking vs no masking
with averaging aggregation.

150k 150k 210k

Upto 6 objects 54.1 54.1 44.3
Upto 12 objects 54.9 50.8 46.6
Upto 18 objects 43.4 38.2 38.2

TABLE V: Comparing the effect of using different neighbour
counts with averaging aggregation.

this mask on vs removing it. Surprisingly, (Table IV) we find
that the mask isn’t useful and removing the mask significantly
improves the results.

4) Effect of Object Count: In Table V, we present the
results for different neighbour counts. We find that with
smaller number of neighbours the results are comparable but
with a larger number of neighbours (18+) the results improve
significantly.

E. Effect of Multi-Trajectory Predictions

In Table VI we study the impact of predicting single (k = 1)
vs multiple (k = 3) trajectories. We find that the results for
multiple trajectories are significantly better. Similar to Lyft’s
reasoning, we suspect that predicting multiple trajectories
allows the different prediction heads to specialize to different
trajectory types and sizes like curved vs straight, short vs
long etc. We show various examples from the validation set
depicting this phenomenon in Figure 4.

F. Effect of Averaging after Feature Transformation

In Table VII we study the impact of switching the order of
the fully connected feature transformation layer and the RoI
averaging operation. We find that the results degrade if we do
feature transformation first. However, if we pass on the extra
label information (for which we require feature transformation
first) we find that the results improve.

V. RELATED WORK

Latest approaches in field of motion prediction, like most
recent approaches in Computer Vision, utilize deep learning
models based on CNN, GNN and LSTMs. We discuss some
of these recent approaches below.

Wu et al. [15] predict future video frames given a sequence
of continuous video frames. They separate the problem in two

150k 150k 210k

1 trajectory 94.4 94.4 93.9
3 trajectories 54.9 38.2 38.2

TABLE VI: Comparing single vs multi trajectory predictions
with averaging aggregation.

150k 150k 210k

Avg Before 54.9 50.8 46.6
Avg After 58.0 54.2 54.2
Avg After w/ Object Label 50 44.2 44.2

TABLE VII: Comparing two setups for averaging aggregation:
averaging before vs after the FC layer with and without object
label information.

parts by separating the background and moving objects in the
image. They predict the background scene by calculating the
optical flow and warp the last scene background. They also
use a spatial transformer network [6] to predict the motion of
dynamic objects. Their approach can be used to predict future
BEV maps and thus infer, future locations of each agent in
our context.

Wu et al. [14] propose a deep model, MotionNet, to perform
perception and motion prediction from 3D point clouds. They
take in LIDAR scans as input and output a BEV map which
is passed to their proposed spatio-temporal pyramid network
to predict the BEV for the next time step.

Hu et al. [5] do motion prediction by modelling interaction
between agents via a graph neural network. They propose a
novel Neural Motion Message Passing (NMMP) framework to
model the interactions between different objects in the scene.
NMMP module to learn individual and interactive embeddings
per agent in the environment based on the history of positions.
The NNMP module uses LSTM to learn individual embedding
for each agent. For interactive embeddings, the NMMP uses a
directed Graph Network to learn the embeddings. This directed
graph models the asymmetric relations between nodes in the
traffic, where the follower traffic is dependent on the leader
but not vice-versa. They use a GAN framework to train the
NMMP. The generator uses representations from the NMMP
module and generates trajectory for each agent. The discrim-
inator also uses a NMMP module and the representation of
the trajectories are passed to a MLP to classify it as a fake or
real trajectory.

Fang et al. [2] propose a two stage network to predict motion
of agents. In the first stage, the CNN encoder-decoder takes as
input the history of the agent locations along with surrounding
road information and outputs a rough estimate of the end point
of the agent path. This estimate is then input to a proposal
generation module which outputs a set of trajectory proposals
using CNN encoder-decoder. These generated proposals are
classified for feasibility and regressed for fine tuning the
predictions. A drawback of their approach is that they do
not model the interaction with other agents explicitly, instead
relying on the CNN to learn such dependencies implicitly.

Aliakbarian et al. [1] propose a framework to predict human
poses given a history of poses. Their framework uses a
VAE [8] to control for the diversity of the generated future
trajectories generated by adding a noise to the RNN hidden
state input to the VAE. This helps in generating diverse motion
sequences.

Fig. 4: Examples of multi-trajectory prediction from the validation set from the perspective of the AV (in green). In each
example we show the prediction and the ground truth for exactly one agent to avoid clutter. Ground truth is purple while the
predicted trajectories are blue. Predicting multiple trajectories allows each trajectory head to specialize as we see in examples
above.

Sadeghian et al. [10] propose a GAN framework for motion
prediction. In the generator, they generate the trajectories
for each agent using the BEV maps alongwith the agents
trajectories. The BEV map is processed using a CNN and the
trajectories are modelled using LSTM. Then for each agent,
two different attention modules, Physical and Social Attention,
learn relevant portions of the BEV image and the neighbouring
agents trajectories respectively. These learnt representations
are concatenated and sent to the decoder LSTM to output the
position of the agent in the future. These trajectories are then
modelled using a LSTM in discriminator to predict whether
the trajectory is fake or not.

Kosaraju et al. [9] is another notable work where the authors
use Bicycle-GAN[18] to model the motion prediction task. In
the generator, encode agent’s trajectory using a LSTM and the
global scene image using VGG[11] network. These represen-
tations are then used with Graph Attention Networks[12] to
learn a global embedding common for every agent. Also, for
each agent, attention is performed over the image features by
using the hidden state of LSTM. The outputs of the graph
attention network, LSTM hidden state and contextualised
image feature are concatenated and given to LSTM as input
to generate future positions. They have two discriminators,
one for classifying the trajectories based on local context and

one by using global image context. They incorporate a latent
encoder to enforce a bijection constraint between the generated
trajectory and input noise to the generator.

Another work similar to ours but in a differnt domain is that
of Ye et al. [16]. In this paper, they approach the problem of
robotic manipulation by modelling the as a forward model. The
forward model takes in the spatial position explicitly alongwith
with RoI image features extracted from the vicinity of the
object which are both then concatenated. A graph network is
then used to model interactions between various objects and
actions for each object are predicted. Our approach differs in
two key ways: (1) we consider various aggregation strategies,
and (2) our domain of application is very different.

A. Future Work

In this section, we identify some sailent directions for future
work:

1) The current approach does not encode spatial context
of agents explicitly, rather we rely on it being learned
via Resnet, esp. since stage 4 has large receptive fields.
More explicit encodings of spatial context may improve
results.

2) Our graph CNN approach makes the assumption that
the relation between various traffic agents is undirected,
which is not necessarily true, e.g. in traffic the trailing
cars are likely to mimic the motion of leading cars.
Therefore, it will be worth while to explore directed
graph CNN architectures and graph construction algo-
rithms.

3) Another promising direction to explore would be re-
cursive prediction based approaches, where instead of
predicting for all 50 steps at one we predict for a smaller
number of steps for all agents and repeat. This has the
benefit of temporal mixing of predictions across agents.
In our experiments such approaches didn’t yield good
results but it’s possible that there’s a better setting of
hyperparameters that would improve results.

4) Our approach only makes use of the rendered BEV
map. In the dataset, satellite imagery is also available.
Approaches that utilize information from both of these
sources may yield better results.

VI. CONCLUSION

In this report, we explored the hypothesis of whether object
centric RoI features are helpful for agent motion prediction
task. We found that modelling the problem using these features
is significantly beneficial and our approach improves upon
the baseline by nearly 20%. To optimally utilize agent RoI
features, we experimented with different architectures moti-
vated by different inductive biases and found, surprisingly, that
vanilla averaging outperforms LSTM and Graph CNN based
methods. We conducted further experiments to evaluate var-
ious hyperparameters that control feature extraction. Finally,
we cite some related work that has also addressed this task
and present ideas for extending our approach in the future.

REFERENCES

[1] Sadegh Aliakbarian, Fatemeh Sadat Saleh, Mathieu Salz-
mann, Lars Petersson, and Stephen Gould. A stochastic
conditioning scheme for diverse human motion predic-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2020.

[2] Liangji Fang, Qinhong Jiang, Jianping Shi, and Bolei
Zhou. Tpnet: Trajectory proposal network for motion
prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6797–6806, 2020.

[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask r-cnn. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42:386–397, 2020.

[4] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain,
S. Omari, V. Iglovikov, and P. Ondruska. One thousand
and one hours: Self-driving motion prediction dataset.
https://level5.lyft.com/dataset/, 2020.

[5] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Col-
laborative motion prediction via neural motion message
passing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6319–
6328, 2020.

[6] Max Jaderberg, Karen Simonyan, Andrew Zisserman,
et al. Spatial transformer networks. In Advances in neural
information processing systems, pages 2017–2025, 2015.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980, 2015.

[8] Diederik P. Kingma and M. Welling. Auto-encoding
variational bayes. CoRR, abs/1312.6114, 2014.

[9] Vineet Kosaraju, Amir Sadeghian, Roberto Martı́n-
Martı́n, Ian Reid, Hamid Rezatofighi, and Silvio
Savarese. Social-bigat: Multimodal trajectory forecasting
using bicycle-gan and graph attention networks. In
Advances in Neural Information Processing Systems,
pages 137–146, 2019.

[10] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, No-
riaki Hirose, Hamid Rezatofighi, and Silvio Savarese.
Sophie: An attentive gan for predicting paths compliant
to social and physical constraints. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1349–1358, 2019.

[11] K. Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015.

[12] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

[13] Yue Wang, Yongbin Sun, Z. Liu, S. Sarma, M. Bronstein,
and J. Solomon. Dynamic graph cnn for learning on point
clouds. ACM Transactions on Graphics (TOG), 38:1 –
12, 2019.

[14] Pengxiang Wu, Siheng Chen, and Dimitris N. Metaxas.

https://level5.lyft.com/dataset/

Motionnet: Joint perception and motion prediction for
autonomous driving based on bird’s eye view maps. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[15] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen.
Future video synthesis with object motion prediction. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5539–5548, 2020.

[16] Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham
Tulsiani. Object-centric forward modeling for model
predictive control. In CoRL, 2019.

[17] J. Zhang, Qi Wu, Chunhua Shen, and Jianfeng Lu. Mul-
tilabel image classification with regional latent semantic
dependencies. IEEE Transactions on Multimedia, 20:
2801–2813, 2018.

[18] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor
Darrell, Alexei A. Efros, O. Wang, and E. Shechtman.
Toward multimodal image-to-image translation. ArXiv,
abs/1711.11586, 2017.

	Introduction
	Data
	Data Format
	Data Extraction Process
	Dataloader Optimization

	Methodology
	Baseline
	Preliminaries
	Agents Representation
	Agent Selection
	Multi-Trajectory Prediction

	Our Approach
	Feature Aggregation
	Averaging Feature Aggregation
	Integrating Label Information
	LSTM Feature Aggregation
	Dynamic GraphCNN Based Aggregation
	Recurrent Prediction

	Experiments
	Metric
	Training Details
	Comparing Aggregation Methods
	Ablation Studies
	Effect of RoI Region Size
	Effect of RoI Pooling Size
	Effect of Object Masking
	Effect of Object Count

	Effect of Multi-Trajectory Predictions
	Effect of Averaging after Feature Transformation

	Related Work
	Future Work

	Conclusion

