
Learning optimal control policies for quadruped
locomotion

Srinath Tankasala

Abstract—Classical control algorithms for quadruped locomo-
tion have been well explored in literature. However, designing
and tuning such controllers can be time consuming and requires
a detailed kinematic and dynamics model of the robot.

More recent work has been focused on developing model
free agents that can learn to walk with enough training. In
this project, training of a locomotion policy on a quadrupedal
robot is explored. We explore the usage of multiple model free
reinforcement learning policies and rate them based on sample
efficiency and robustness of the final agent. While we successfully
train the quadruped to walk directly using the action space,
training it to walk on uneven terrain is prohibitively expensive
and may require some form of environmental feedback like
perception.

Firstly, we import the Laikago robot into the Mujoco envi-
ronment as part of the system setup. Secondly, OpenAI’s stable-
baselines implementation of Actor-Critic methods is used to train
the different agent policies. A good amount of effort went into
shaping the reward to obtain a satisfactory walking gait from the
quadruped robot. Finally, a comparison of the different model
free training methods is done to see how they perform relative to
each other in terms of robustness to perturbations and uneven
terrain.

I. INTRODUCTION

Doing autonomous surveys/inspections of oil rigs and other
plants is of great interest in the industry. It is currently done
by humans and is a routine task that can be automated. For
such applications, a robot must be able to navigate indoor
and outdoor environments. A wheeled robot is incapable
of climbing stairs and can have non-holonomic constraints,
meaning that the actions (wheel speeds) cannot take it to all
possible desired states. For example, the robot can have a turn
radius constraint and also it cannot move sideways/laterally
or yaw 180. This is why Quadrupeds are a universal choice
for these types of surveys. They’re agile and their ground
locomotion is nearly unconstrained and can traverse any type
of terrain while doing an inspection.

Dynamic locomotion of quadruped and biped robots is a
challenging topic as there are multiple problems that need to
be addressed for the controller to work well. A controller for
a quadruped needs to be able to handle the aerial phases of
the leg motion, short ground contact times and high speed
swings to locomote successfully. Thus the locomotion is
often charatecterized as gaits (trotting, galloping, pronking,
bounding, etc.) of animals that can be reproduced on a robot.

Instead reinforcement learning (RL) algorithms can be used
to actuate such robots through pure exploration and this a well
studied area in RL. Here the user doesn’t need to have any
knowledge of the robot model or that of the environment. In
this project we explore applying such RL techniques to learn

a control policy that enables the robot to walk and navigate
in different environments.

The RL agents used is model free and so it is exploration
intensive. Given this is a continuous domain problem, there
exist many deep RL agents that can learn to convert the
input observations from the robot sensors into motor actions
for the robot. It’s assumed that the dynamics of the motor
controller is very fast and so it achieves the given action/torque
instantaneously.

Fig. 1. Final trained policy learnt to move forward

After training the robot for a long time horizon, it was
able to learn how to walk, figure I. In terms of sample
efficiency, the SAC was found to do better than other policies.
For brevity, we only show the comparison between SAC
(off-policy) and TRPO (on-policy). Based on the rewards
provided, the bounding gait emerged as the robots gait. To
learn different gaits like trotting, pronking, etc., will require
reward shaping and this is not explored here. This is why
imitation learning methods are sometimes used as making such
behaviours emerge manually may be difficult. It may require
some form of Imitation learning which is beyond the scope of
this project.

II. RELATED WORK

A. Classical locomotion control

Several control strategies have been developed in literature
that address them. The Boston Dynamics Wildcat [3] and
the MIT Cheetah project are good examples of this. While
classical controllers exist to control such robots, the engineer
needs to have the full kinematic model to enable these classical
controllers to work. This makes them difficult to scale up or
the controller design is too system specific making it hard to
transfer to another type of actuation (hydraulic) or design.

In literature Whole Body Control (WBC) is considered one
of the most robust control strategies for locomotion. WBC



is a tracking controller, where the robots centre of mass
(CoM) is made to follow a known gait trajectory. It does this
by manipulating ground contact forces at the legs, and this
is called the contact/impulse phase. There is no established
method to calculating these ground contact forces given the
CoM mass trajectory. Some have been proposed in [9] and
[5] but even they also have issues dealing with short contact
phases, i.e. at high speeds. [6] uses a hybrid approach for this,
where an MPC method is used to infer the reaction forces.
Since MPC is computationally intensive, the contact model
used in [6] made several simplifications to run in real time,
and this simplification doesn’t hold at high speeds. Hence the
Cheetah achieves a max speed of 3.7 m/s (Froude number 6)
which is one of the best in the surveyed literature.

Once the reaction forces are known at each leg, the kine-
matics model is used to calculate the required motor torque
commands. This is the impulse control phase of the leg. To
calculate the torque command when the leg is in the swing
phase, the foot trajectories need to be inferred as well. This
is not straightforward and several planners exist for this in
literature for this such as the one used in [11].

Overall given the above considerations, classical control
methods have several limitations. Using a controller with lots
of hierarchy requires the lower level controllers to run at very
fast rates. This can make the setup expensive. For example,
in the Cheetah controller, the motor control runs at 40 kHz.
Secondly, it’s cumbersome to tune such a controller hierarchy
on the robot, and special tests need to be performed for it.

The major advantage of the classical approach is that it
provides performance guarantees for the controller. So given
any robot state, one could exactly compute the action that
would be taken by the controller. Thus the user can do some
tuning to ensure the performance stays in acceptable limits.
For instance, it would be easy to ensure the controller remains
compliant in all states with this approach.

B. Learning based locomotion

There has been siginificant work in recent literature on using
RL based methods to obtain locomotion policies for legged
robots. There exist two RL approaches to learning locomotion.
The first approach is to use an imitation learning method
to make the robot locomote like an equivalent animal [2],
[10]. Such methods can use behavioural cloning approaches to
learn the locomotion policy. Though it is sample efficient, it
requires collecting a lot of data to achieve good performance.
Such policies are also more robust and have good transfer
performance. It can also be used to learn different gaits as
done in [10]. In Peng et al. [10], they successfully translate the
motions from a dog onto a quadruped (Laikago). They use a
sim-to-real approach where the agent is trained on expert data
gathered from the dog and then a domain transfer is applied
to make the robot successfully perform in the real world.

The second is to learn from direct exploration of the envi-
ronment with a model free agent, as done in [4], [7]. This is
very sample inefficient and requires lots of exploration. Hence,
it doesn’t require any data collection process but the final

policy is not robust. Many approaches like Meta-Learning [12]
and Bayesian optimization [1] have been shown to increase the
robustness of such agents. The learned policy also doesn’t offer
performance guarantees. So if it encounters an unseen state not
in the sampled dataset, there is no guarantee on the action the
agent will take. Thus the agent needs some interaction in the
new environment and should collect online data to adapt well.

III. DATA

A. Quadruped robot model:

The Laikago robot from Unitree Robotics is used in this
work. All of its specifications are open sourced and it is widely
used in literature. The specifications of the robot for this work
were taken from the Laikago github repo. Also, since this
robot hardware is available in the UT research labs, it opens
the possibility of applying the results learnt here onto the
quadruped hardware.

B. Simulation environment

Fig. 2. Laikago joint rotation axes

The openAI MuJoCo simulation environment is used in
this project. MuJoCo achieves state of the art performance
in capturing contact dynamics. It is easy to use and a popular
opensource tool for simulating quadruped locomotion. We use
Mujoco-py package [8] to interact with the simulator and
obtain experimental data.

It is very easy to mount sensors on the robot model in
Mujoco. It can be done by making simple additions to the
model XML file. Using the appropriate sensor description from
the XML API documentation we mount contact sensors and
IMU’s. Perception based sensors were not used for this project.
However, they will be essential for better environmental feed-
back, especially for complicated tasks. There are a wide range
of actuators available in Mujoco. For this project we use the
motor torque actuator at each joint.

Each leg of the robot has a hip, thigh and calf joint giving
rise to 3 DoF. So the robot has 12 actions. For specifying
the full position of the robot, we need 3 variables to specify
CoM (Centre of Mass) position and 4 variables to specify its
quaternion orientation.



The simulation step size is set to 0.002s and we simulate for
2000 time steps, for a total of 8 secs (2 frame skips included
in calculation).

No. of variables for robot position = 12 + 3 + 4 = 19

Similarly, we have 12 joint velocities and 3 translational
velocities along with the angular velocity vector.

No. of variables for robot velocity = 12 + 3 + 4 = 19

Hence the robot pose and velocity requires 38 variables to
be fully defined.

Fig. 3. Sample terrain generated by using White noise as height field

C. Learning environment

For the agent training, we use the OpenAI Gym environ-
ment. Different agent types can be created in Gym, such as
TRPO, DDPG and SAC, etc.

The performance of the agent is determined by how stable
its gait is along with the maximum speed it can achieve. We
evaluate how the agent is able to generalize/adapt to different
environments/terrains. We also evaluate how well the agent is
able to reject force perturbations.

Mujoco and Gym can interact with each other and this
python interface is widely used. To import Mujoco environ-
ments into Gym, a class interface was written based on [].
This required writing some methods like step(), reset(),etc.
Once this interface was setup, the agent being trained in Gym
directly obtains the required data from the Mujoco simulator.
We used this to train two different agents, SAC (off policy)
and TRPO (on policy). The robot starts at the origin for each
episode. We terminate the episode if the pitch or roll exceeds
40 degrees and reset the robot.

IV. METHOD

A. State space

We model the environment as a partially observable Markov
decision process (POMDP). The control agent takes observa-
tions from the environment through different sensors as input.
The output of the control agent is a 12-dimensional vector
of normalized action values. The environment is deterministic
and the action provided is enough to determine the future state

of the robot and environment. In practice this is generally not
the case and there is some stochasticity caused by actuation,
sensor noise and uncertainty in environment parameters. These
are not considered for this project.

B. Policy representation

We propose directly learning joint action based on the robots
forward progress. We use the family of Actor-Critic agents to
train the agent. In, [4], they train a half cheetah model to walk
using this method and so we choose a similar strategy.

Fig. 4. Training setup

The choice of observations and reward functions is impor-
tant for the agent to learn well.

C. Reward Design

The reward design should be non-sparse and the observa-
tions as informative as possible. Based on [], we specify a
simple reward function of forward velocity (vx). We apply
some additional rewards and penalties to accelerate the training
process.

R(t) = cv ·vx(t)−cθ ·θ2+cx ·e2x−cτ ·τ2−chh̄2+calive (1)

The co-efficients cv, cθ, cx, cτ , ch must be chosen
appropriately. θ is the total inclination of the robot with respect
to the global Z-axis. τ is the exerted motor torque and ex is
the projection of the robots X axis vector onto the global X
axis vector. calive is a constant reward provided to the robot
for staying alive.

D. Observation space:

We should be able to infer the robot state and any feedback
from the environment from our observations. Given this is a
POMDP problem, we use many observations to capture details
of the entire state. While it would be better to use perception
for environmental feedback, it is not done here. Namely the
observations are,

Entire robot pose and velocity, i.e. all 38 variables for
position and velocity
Ground contact sensors for environmental feedback
Acceleration of the CoM



Roll, pitch, and yaw rates of the torso along with angular
accelerations
Angular accelerations of the hip, thigh and calf joints for
each leg
Action values (torque for each joint) from the previous
time step

The observations can be used to reconstruct the complete
state of the robot and the environment making it a fully
defined problem. Adding more observations helps the robot
generalize to different environments. More observations than
the above were added making it 100 variables. However the
above observation set was enough to get the robot to learn
locomotion skills.

Of great significance is the robot pose and velocity obser-
vation. Without that, the robot was unable to learn even the
simplest actions, such as standin up, etc. An ablation study of
the different observations is not presented here for the sake of
brevity. The robot pose and velocity along with ground contact
forces were the most imporant observations to help the robot
learn.

E. Action space:
The agent generates 12 actions normalized between −1 and

1. After multiplying with a scaling factor (gear ratio), these
actions correspond to the joint torque signals for the revolute
joints. The overall joint torque bounds are gathered from the
specification of the motors used in the Laikago robot. Laikago
has different torque limits and motion range for each joint. For
this report the joints were restricted below their maximum
allowable values. This was done to reduce the search space of
the agent and explore only stable configurations.

For all four legs, the initial values for the hip and knee
joint angles are set to vlaues that keep the robot in a stable
upright configuration. This configuration is used to set the
neutral positions of all the joints i.e. their 0 positions.

F. Training:
We use the stable-baselines package which has an imple-

mentation of the Soft-Actor Critic and TRPO algorithms. It
is built for OpenAI Gym environments and can be directly
imported to train our model.

For the SAC we use a 2x64 layer MLP to implement the
actor critic with a ReLU activation function. The temperature
and entropy coefficient parameter are automatically calculated
based on the algorithm in [? ]. We update the Q function every
100 samples with a mini-batch size of 64. The policy learns
to walk well within 1.5x106 samples.

For the TRPO we set the entropy coefficient to 0 and
the max. KL loss as 0.01. We update the Q function every
1000 samples using 10 iterations for calculating the conjugate
gradient. It took more than 5x106 samples for the agent to
walk well.

V. RESULTS

We compare the performance of the two different trained
agents in terms of forward velocity, pitch and yaw errors. The
comparison of the final trained agents is shown below:

Fig. 5. Comparison of x velocities

Fig. 6. Comparison of height variance

As can be seen in figures 5 to 8, the SAC policy clearly
outperforms the TRPO agent in all metrics except the variance
in height. Tuning the reward parameters only marginally
increased the forward velocity before the agents fell. The
SAC achieved a maximum velocity of 1.4m/s amongst all
simulations. Ensuring pitch and yaw stay in reasonable bounds
ensures that the agent learns quicker rather than exploring a
bigger state space and unstable configurations.

The cumulative rewards for each of the agents during the
training phase is shown in figure 9 and 10. Clearly the SAC

Fig. 7. Agent yaw with time



Fig. 8. Pitch comparison of learned policies

Fig. 9. SAC rewards vs time steps

is able to learn faster than the TRPO algorithm. It should
be noted that the choice of hyperparameters for the different
agents influences the performance finally obtained agents. So
a fair comparison may be difficult but nonetheless, on-policy
optimizations are in general sample inefficient compared to
SAC.

Fig. 10. TRPO rewards vs time steps

Another observation of the agent behaviour is the wide
variation of actions to the extremes. In figure 11, we plot the
joint commands in the Front Right (FR) leg for both agents.
Notice how they keep moving between -1 to +1 rapidly. This is
possibly because the agent is trying to get as much reward by
going fast. Hence it tries to exert as much effort as possible.
Balancing the cv term and cτ is very difficult. The agents

Fig. 11. FR calf action vs time

are quite sensitive to them, increasing cτ penalty causes the
robot to not take any action at all and reducing it results in
even greater variance in actions. For simulation purposes, the
robot will be able to perform this action but this agent cannot
perform well on a real robot. Thus some reward shaping is
require to make the agent actions smoother and implementable
on a real robot.

A. Policy robustness

To measure policy robustness we use 2 different metrics:
Change in terrain
Change in mass (simulating payload like sensors, etc.)

The policy robustness is measured by the distance travelled
in these new scenarios. The baseline is 7 metres in 200
timesteps for the original simulation. We only evaluate the
robustness of the SAC algorithm here. We calculate the
average distance travelled by SAC in 5 episodes.

For the terrain test, we create a height field based on
Gaussian noise as seen in figure 3. The variance of the
Gaussian noise is increased to simulate more uneven terrain.

For the mass test, we simply add a point mass directly
above the CoM location of the torso. This simulates addition
of sensors or a manipulator arm on the robot.

As can be seen in figures 12 and 13 the perfomance of the
policy is very good until a certain threshold after which it
precipitously drops.

VI. CONCLUSION

In conclusion, we were able to successfully learn a loco-
motion policy from pure exploration of the environment. The
learnt policy was very brittle and did not generalize well to
changes in environment. This can be mitigated in two ways.
Since the policy was applied as is, i.e. a zero shot transfer,
it performed very poorly in the new environment. We could
allow it to collect data online for the new environment and
retrain itself with some experiments. The second method is
to train a more robust policy by getting more environmental
feedback, like perception.

The second observation is the saturation of actions to the
extremes. This needs to be reduced by tuning the reward better
to achieve smoother actions. This reward could also be learnt



Fig. 12. Mass test performance of SAC policy

Fig. 13. terrain test performance of SAC policy

using a maximum entropy IRL method. This method would
also allow different gait types to emerge from the training
process. In this work only the bounding gait was successfully
reproduced.

We compared two different methods for learning the the
agent policy. We use an off-policy method (SAC) and on-
policy (TRPO) to train the agent. We found that the SAC was
much more sample efficient and robust compared to TRPO.
More robustness measures can be tested in the future like
adding force perturbations, etc.

Finally this whole setup can be imported into Robosuite to
take advantage of its extremely modularity and rich environ-
ment options. This is left as future work.

REFERENCES

[1] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-
Baptiste Mouret. Robots that can adapt like animals.
Nature, 521(7553):503–507, 2015.

[2] Jared Di Carlo, Patrick M Wensing, Benjamin Katz,
Gerardo Bledt, and Sangbae Kim. Dynamic locomotion
in the mit cheetah 3 through convex model-predictive
control. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1–9. IEEE,
2018.

[3] Boston Dynamics. Introducing wildcat. boston dynamics.
URL https://www.youtube.com/watch?v=wE3fmFTtP9g.

[4] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lem-
mon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, and
David Silver. Emergence of locomotion behaviours in
rich environments, 2017.

[5] Donghyun Kim, Jaemin Lee, J Ahn, Orion Campbell,
Hochul Hwang, and Luis Sentis. Computationally-
robust and efficient prioritized whole-body controller
with contact constraints. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 1–8. IEEE, 2018.

[6] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo
Bledt, and Sangbae Kim. Highly dynamic quadruped
locomotion via whole-body impulse control and model
predictive control. CoRR, abs/1909.06586, 2019. URL
http://arxiv.org/abs/1909.06586.

[7] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning, 2019.

[8] openai. Mujoco-py. https://github.com/openai/mujoco-
py, 2013.

[9] Hae-Won Park, Patrick M Wensing, and Sangbae Kim.
High-speed bounding with the mit cheetah 2: Control
design and experiments. The International Journal of
Robotics Research, 36(2):167–192, 2017.

[10] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-
Wei Edward Lee, Jie Tan, and Sergey Levine. Learning
agile robotic locomotion skills by imitating animals. In
Robotics: Science and Systems, 07 2020. doi: 10.15607/
RSS.2020.XVI.064.

[11] Ludovic Righetti and Stefan Schaal. Quadratic program-
ming for inverse dynamics with optimal distribution of
contact forces. In 2012 12th IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2012),
pages 538–543. IEEE, 2012.

[12] Wenhao Yu, Jie Tan, Yunfei Bai, Erwin Coumans, and
Sehoon Ha. Learning fast adaptation with meta strategy
optimization. IEEE Robotics and Automation Letters, 5
(2):2950–2957, 2020.

https://www.youtube.com/watch?v=wE3fmFTtP9g
http://arxiv.org/abs/1909.06586

	Introduction
	Related Work
	Classical locomotion control
	Learning based locomotion

	Data
	Quadruped robot model:
	Simulation environment
	Learning environment

	Method
	State space
	Policy representation
	Reward Design
	Observation space:
	Action space:
	Training:

	Results
	Policy robustness

	Conclusion

