
Supervised Object State Prediction to Improve
Sample-Inefficient Pixel-based Policies

Aditya Arjun

Abstract—Empirically, it is much more difficult to perform
reinforcement learning from high-dimensional pixel observations
compared to reinforcement learning from low dimensional object
state observations, in terms of sample efficiency and stability. In-
tuitively, this is because the model needs to extract a meaningful,
compressed representation of noisy high-dimensional image data
before learning can proceed. In the real world, low dimensional
object state observations may not always be available (as position
and orientation data for objects that a robot might need to
interact with), but this data is available in robotics simulation
environments used to train reinforcement learning policies. In
this paper, we explore leveraging low dimensional object state
observations in simulation to train reinforcement learning policies
that can operate on pixel observations when deployed. The low
dimensional object state available in simulation can be used as a
supervised objective for a separate module that aims to predict
object state from pixel observations, and a reinforcement learning
policy that is trained on object state can use this module’s
predicted object state to take actions at test time. We analyze
this approach using standard tasks in robosuite, a framework
for robotics reinforcement learning [12]. In general, this proposed
approach leads to policies that follow reasonable trajectories and
come close to solving difficult robotics manipulation tasks, but
compounding small-errors in object state prediction tend to lead
to covariate shift issues that stop these models from fully solving
manipulation tasks

I. INTRODUCTION

Generally, reinforcement learning from pixel states is more
sample-inefficient than learning from state based features
[11]. The information necessary to predict state is often in
raw image observations, but machine learning models have
difficulty learning and extracting this state information from
high dimensional image observations. There are a variety
of approaches that other literature takes to learn a robust
representation of image data that is easier and more stable to
learn from than the raw image data. For example, some works
use image augmentations to learn a representation invariant to
the augmentations [8, 11] and others use auxiliary loss terms to
force the encoded state created from the image to help predict
useful semantic information [6, 7].

Within the robotics domain specifically, there are many
tasks where state observations may be available in simulation,
but are not available in the real world, as lifting a block or
moving a block to a goal location [12]. It is desirable to
produce a pixel-based policy that can be used in the real
world, and the simulation environment in this special case
provides extra information that can be used to inform policy
learning in learning a pixel-based policy. Previous works that
produce pixel-based policies do not leverage the existence of
this potential new source of information during training likely

because this difference in available information in simulation
and the real world is not necessarily present in general case
reinforcement learning domains.

Rather than using a purely unsupervised or self-supervised
approach with the pixel observations in simulations, we can
leverage the object state as a supervised objective to predict
and train off the raw object state. When deployed, rather
than using the object state (which is no longer available) the
model trained using supervised learning to predict object state
is used to estimate the object state, producing a policy that
runs off of pixel observations, but was effectively trained with
state observations. Ideally, this trained policy will not suffer
from the sample-inefficiency of policies trained on pixels
using previous approaches and still achieves a similar level of
performance to these policies. The observations used to train
the supervised component will be built up over time as the
agent dynamically collects new observations with experience.
This approach can leverage many of the data-augmentation
techniques discussed in related works in the supervised portion
of the algorithm, and can be seamlessly integrated with many
existing RL algorithms as the supervised portion of the model
can be trained almost independently of the RL model, as
the soft actor critic implementation used in this paper. In
this paper, we explore this approach of using a supervised
objective to predict the object state from images to help solve
robotics manipulation tasks. By using this supervised objective
to guide representation of the image state, we hypothesize that
trained RL policies operating on pixels will be more stable and
sample-efficient to train.

While policies trained using the proposed approach tend to
follow similar trajectories to policies trained exclusively off of
ground truth object state, small errors in object state prediction
can compound and lead the policy to new states and result in
task failure.

A. Problem Statement

We are given two Markov decision processes for a robot
learning task (MDP), one for the training environment and
one for the test time environment, defined by the tuple
(S,A, T ,R), where S denotes the set of states, A denotes
the set of actions, T gives transition probabilities where
T (s′, a, s) = P (st+1 = s′|st = s, at = a), and R gives the
reward where R(s, a) is the reward given to the agent for being
in state s and executing action a. In the training environment,
Strain consists of both the pixel observation and object state
observation, but in the test environment Stest only consists of



the pixel observation. Otherwise, the training and test MDPs
are identical.

The goal is to leverage the extra information available in
the training MDP to train a policy that optimizes for reward
on the test MDP. Specifically, the goal is to train a policy π
that maximizes the expected rewards over a trajectory in the
test time MDP ∑

t

Est∈Stest,at∼πR(st, at)

II. RELATED WORK

Other works that attempt to reduce the sample-efficiency
gap between learning from state and learning from pixels
do not take advantage of object state and solely train based
on pixel state. Because these approaches do not use the raw
object state at all, for these approaches there is no functional
difference between the training and testing MDP, and they
simply seek to optimize and learn a good unsupervised or self-
supervised representation for image data that is more stable
than just the raw pixels themselves.

A. Autoencoders and Auxiliary Loss Terms

Lange and Riedmiller present an approach that uses deep
autoencoders to create an encoded state that ideally contains
useful semantic information important for solving the task [7].
By reducing the dimensionality of images to the encoded state,
training becomes much more stable. However, the actual RL
task and rewards have no influence on the encoding itself, so
the encoding may not contain useful task information and the
resulting policy may be suboptimal.

Jaderberg et al. use auxiliary losses based on pixel changes
and network features to help the agent learn a good repre-
sentation of images that will aid learning [6]. However, the
auxiliary loss terms may not be directly useful to all tasks
and may lead to suboptimal policies if the agent attempts to
optimize one of the auxiliary losses over the primary objective.

This family of approaches learn good representations of
image state, but the actual object state is often a superior
encoded state that provides a more useful learning signal for
the problem. In this specific RL instance where the object state
is available during training, it makes more sense to directly use
that rather than learn an unsupervised representation.

B. Data Augmentation

Laskin et al. investigate adding various data augmentations
as cropping, translating, and color jitter to sampled image
observations [8]. This data augmentation is a similar idea
used in computer vision supervised learning, which forces the
model to learn useful features about the image state that are
invariant to small changes that should not affect the meaning
of the image. While RAD did demonstrate success on simple
domains, they do not demonstrate success on more compli-
cated robotics tasks or in robotics simulation frameworks.

Srinivas et al. investigate the same idea as [8], but train
a constrastive loss objective rather than directly augmenting
image observations [11].

Fan et al. presents a more recent approach that aims to
leverage data augmentation effectively by training an expert
using simple, weak augmentations and then training a student
that uses stronger data augmentations and supervises the stu-
dent on the stronger augmented data to predict what the expert
predicted [2]. Secant does demonstrate success on Robosuite,
a robotics simulation framework that provides useful tasks to
benchmark RL policies on [12].

These approaches are useful because they generate good
representations of images that are invariant to small, incon-
sequential changes. However, given that the problem can be
solved by using solely object state, using the object state
to train the part of the model that processes images seems
likely to provide a stronger signal than the only the rein-
forcement learning reward back-propagated through the full
model pipeline, and the supervised component of our proposed
approach can similarly leverage data augmentations that these
alternative approaches use in training as the supervised com-
ponent is initially independent of the RL agent training off of
object state.

III. DATA

For this project, we used robosuite, a simulation framework
for robot learning to train and evaluate reinforcement learning
policies [12]. We ended up testing this approach on two
single robot tasks (Reach and Lift) from robosuite, using
the OSC POSE controller, the Panda robot, and a control
frequency of 20 Hz. The environment episodes were run with
similar parameters to robosuite benchmark, using a horizon
of 500 time steps for each task. Image observations and
object state observations for both environments were stored
and used to train the supervised object predictor and RL
Agent. The image observations consisted of a 96x96 image
from the agentview camera observation, and the object state
observations differed based on the task as described below.
The policy also had access to the robot’s state, which included
information as the position and orientation of the robot’s
gripper in both the train time and test time environment. It
makes sense to give the policy access to the robot state as
real-world robots will have access to robot sensor data during
deployment.

A. Reach Task

The reach task is a simplified custom task designed to test
the robot’s ability to reach a given fixed target location. The
policy receives a shaped reward based on Euclidean distance to
the goal location based on the current location of the gripper.

There are technically no objects in this simplified reach
task, so we ended up designing our own object representation
for the task that would serve as a sufficient information to
solve the task. The low-dimensional object state used as a
supervised objective was simply the difference between the
robot’s gripper position and the desired goal position. This
serves as a useful object state for the task as the robot only
needs to learn to minimize the difference between the robot’s
gripper and the goal position to solve the task.



B. Lift Task

The lift task is a standard task that is already built into
robosuite desired to test the robot’s ability to navigate to a
target cube object and lift it up. The policy receives a shaped
reward based on its distance to the target object, whether
the arm is gripping the target object, and if the object is
successfully being lifted.

The object state in the Lift task consists of the position
of the cube object, orientation of the cube object (as a
quaternion), and the distance between the robot gripper and
the cube. Like in the reach task, the robot needs to learn
to minimize the difference between the gripper and the cube
using the object state and then use the orientation and position
information to successfully grip the cube.

IV. METHODS

We ended up exploring two primary approaches: an end-to-
end approach that trains all main components together and an
”imitation learning” approach that trains the main components
separately by using a trained reinforcement learning agent
to generate expert rollouts for an object predictor to train
from. Below we describe the main components used in both
approaches, explain how the main components are deployed at
test time, detail both approaches more explicitly, and compare
the two approaches.

A. Main Components

1) Object Predictor: The object predictor is a relatively
straightforward CNN architecture, as convolutional neural
networks have been quite successful in a variety of supervised
learning computer vision tasks [3]. This CNN architecture
consists of three 2D Conv Layers, followed by a flatten
operation into two feedforward layers. The object predictor
will be trained based on the images of the rollout taken
by the RL agent and ground truth object states. Because
the object predictor is fully supervised, we can leverage
standard computer vision techniques for training, as the data
augmentation discussed in the literature review.

2) RL Agent: The RL agent simply needs to learn find ac-
tions using a low-dimensional state observation encompassing
important information about the environment to optimize re-
ward, and existing standard reinforcement learning techniques
exist to solve this common problem. Robosuite has been
benchmarked with standard reinforcement learning approaches
that are able to solve this problem on some of the built in tasks
on robosuite. The RL agent will simply be an implementation
of Soft Actor Critic, a well-known off-policy reinforcement
learning algorithm [4].

B. Test Time Pipeline

Given an object predictor that can predict object state from
images and RL agent operating off of object state, we can
construct a simple pipeline to create a policy that is able
to operate off of image observations by connecting the two
main components. Given some image, we can run the object
predictor to predict the object state and pass this predicted

object state to the RL agent to determine some action. Given
that the object predictor is able to accurately predict the
object state from the image, the RL agent can simply make
decisions based on object state, which is an easier, solved task
in robosuite.

Fig. 1: Depiction of Pipeline during test time. The image state
is given to the Object Predictor, which gives a predicted object
state that the RL agent operates off of.

C. End to End Approach

Initially, the RL agent will train purely off the true object
state returned from the environment. As the RL agent visits
more states, these states will be saved in a replay buffer and
the object predictor will periodically sample a large batch from
the replay buffer and train to predict the object state of each
image in that batch from the raw pixels. After some number
of pretraining iterations, specified as a hyperparameter, the
RL agent will begin to use a linear combination of the true
object state and the object predictor’s predicted state. If the
true object state is o and the object predictor’s predicted state
is õ, then the RL agent will take (1− α) · o + α · õ as input,
where 0 ≤ α ≤ 1 and α begins at 0 at the start of the run. Each
iteration, α linearly increases by some amount, until reaching
the cap of 1, at which point the RL Agent is completely
using the estimated object state and can be deployed once
it is sufficiently trained and able to accomplish the task using
the estimated object state.

After this process is finished, the result can be plugged
into the test time pipeline, giving a reinforcement learning
policy that operates on images but was trained as if it operated
off states that ideally will demonstrate improved sample-
efficiency compared to standard image-based reinforcement
learning approaches.

Fig. 2: Depiction of end to end training scheme. The RL
Agent is trained with a linear combination of the ground truth
object state and the predicted object state given by the Object
Predictor.

D. ”Imitation Learning” Approach

This approach is not true imitation learning, as neither of the
components are being trained to optimize a policy based on
expert demonstrations, but does share similarities to behavioral



cloning, a common imitation learning technique. Rather than
learning to copy an expert’s policy in each state as in standard
behavioural cloning, this approach uses a separately trained
reinforcement learning policy off of object state to generate
several rollouts of expert data. Then, rather than predicting
the action along each of this policy’s trajectories, the object
predictor is trained to predict the object state that the policy
uses given the image observation at each state along the
trajectory. The RL agent trained in isolation off of the ground
truth object state serves as the expert and the object predictor
learns to predict object state along the trajectories that the
trained RL agent tends to follow.

Fig. 3: Depiction of imitation learning training scheme. The
RL agent is purely trained off of ground truth object state and
used to generate several expert data rollouts once it is able
to solve the desired task. The object predictor is then trained
independently on these data rollouts to predict the object state
from images along trajectories that the RL agent follows.

E. Comparison of Approaches

The ”Imitation Learning” approach initially was developed
to present a less memory-hungry and stable approach to
developing the desired pipeline compared to the end to end
approach. In the end to end approach, which uses Soft Actor
Critic as the RL Agent, we maintain a replay buffer of
previously seen observations to train the policy and critic
offline. Because the end to end approach trains the object
predictor and the RL agent together, this replay buffer needs to
maintain a massive collection of high dimensional image ob-
servations, which is an expensive memory cost. Furthermore,
if the supervised predictor happened to be unstable initially
in training, it might cause instability and exploding losses
in the actor and critic networks as these networks would be
receiving noisy inputs and making bad predictions. As the
imitation learning approach trains these models in isolation,
this noise issue does not occur and there is no need to store
high dimensional image observations in the replay buffer in-
memory (as they can simply be saved to disk after the RL
agent is trained).

However, the ”Imitation Learning” approach may suffer
from common issues in behavioural cloning as those brought
up in [10]. The object predictor is trained in isolation from
the RL agent and only along trajectories that the RL agent
encounters. If the object predictor has small errors in the
predicted object state passed to the policy, this noise might
cause the policy to make different actions and change the state
to a new area that the object predictor does not accurately deal
with. This issue may cause these small errors to compound

and cause the overall policy to fail the task. The end to end
learner uses the object predictor while generating rollouts, so
the policy is trained to be more robust to the noise of the object
predictor model and therefore will likely not suffer from the
same issues.

We did end up fixing a memory issue that Dr. Zhu brought
up during the paper spotlight that limited the size of the replay
buffer by storing the high dimensional image observations as
bytes rather than casting the images to floats, which saved
significant memory and made the end to end approach more
practical.

F. Base Code

In this study, we built off and modified the robosuite
benchmark code [5] to run experiments and handle logging
and used a Reinforcement library named rlkit [1] to handle the
base soft actor critic implementation and infrastructure needed
for soft actor critic.

V. EXPERIMENTS

For these experiments, the policies were trained for 500
epochs according to each approach, where each epoch con-
sisted of 2500 exploration steps and 1000 training steps.
Afterwards, the final policies were evaluated over 20 different
rollouts to determine the mean reward achieved along the
rollouts, the maximum number of rollouts, and the percentage
of rollouts where the policy successfully finished the task.

A. End to End Approach Results

Unfortunately the end to end policies were not able to solve
either of the two tasks, reach or lift in the desired number of
epochs. However, learning did appear to be proceeding for
both tasks and both tasks were able to receive significantly
better rewards than policies acting at random. For the reach
task, the end to end approach was able to learn to occasionally
move close to the desired location, evidenced by the high max
reward close to solving the task. For the lift task, the end to
end approach was able to navigate towards the cube and claim
the associated reward, but was not able to successfully grasp
the cube. We hypothesize that this is due to small errors in
object state prediction causing the model to operate as if it
was in an incorrect state and attempt to grasp the cube object
when the cube object is far outside the robot gripper. Given
that a policy trained purely off of object state is able to solve
both tasks within 500 epochs, as demonstrated by [5], the end
to end approach and errors in object state prediction make it
harder for the overall policy to learn and decreases sample
efficiency some.

Task Mean Reward Max Reward Success Percentage
Reach 0.0414 0.8277 0%
Lift 0.113 0.418 0%

Fig. 4: Table compiling results for end to end approach results



B. ”Imitation Learning” Approach Results
The imitation learning approach did significantly better than

the end to end approach on the evaluation and was able to
solve both tasks at least once out of 20 rollouts. The imitation
learning did significantly better on the reach task, which is
understandable as this task requires less precision than the
lift task, which needs good positioning of the robot gripper
to accurately pick up the object. Additionally, it’s possible to
solve the reach task using only robot state observations, which
are given independent of the object predictor, so it is possible
the model is simpler learning to optimize based on the robot
sensor state observations and does not need to deal with the
noisy object state predictions in the reach case. In the Lift case,
the imitation learning approach suffers from compounding
noise issues that cause the gripper to badly estimate the object
state and attempt to grasp when out of position.

Task Mean Reward Max Reward Success Percentage
Reach 0.867 1.0 95%
Lift 0.178 1.0 5%

Fig. 5: Table compiling results for imitation learning approach
results

C. Qualitative Analysis of Common Issues
In this section, we analyze common issues encountered

while implementing the supervised object state predictor and
how these common issues might contribute to task failure.

1) Object Occlusion: During rollouts where the robot needs
to interact with a physical object, the robot might occlude
the view of the object that it needs to interact with, which
practically makes it very difficult to predict the occluded
object’s position and orientation. The below figure demon-
strates this observed issue while the robot was attempting to
perform the Lift task. Given that the object state cannot be
reasonably inferred from the pixel observation while the object
is occluded, the policy is likely operating off of bad object
state predictions in these cases, which leads to unpredictable
behaviour and task failure.

(a) Arm moving over object (b) Arm occluding object

Fig. 6: Demonstration of the object occlusion issue. In the Lift
task, the robot arm can cover the object and make it difficult
to predict position and orientation.

2) Robot Out of View: The robot arm can even leave the
field of view of the agent view camera during rollouts, which
was often observed in the Reach task when the arm overshot
the target position. Given that the arm is outside the field of
view, it is difficult to infer elements of the object state that rely
on the relative position of the robot arm and the target position
or object, as the robot arm can be in a variety of positions
outside of the field of view that result in a different relative
position but an identical pixel observation. While it might
technically be possible to learn to deal with this issue by using
the robot state observations, the object predictor currently only
uses the raw image state to make object state predictions and
therefore will have difficulty predicting object state in these
cases.

(a) Arm moving towards target (b) Arm overshooting target and
leaving view

Fig. 7: Demonstration of the out of view issue. In the Reach
task, the robot arm can leave the field of view, making it
difficult to accurately predict object state from just the image
observation.

3) Object Prediction Error: This approach of predicting
object state can suffer from small errors in prediction of the
object state. Small inaccuracies in the object predictor can
cause the policy to act as if it were in a different position and
fail the task, especially in manipulation tasks where somewhat
precise grasping is needed. This issue is especially evident
in the imitation learning implementation, as these errors can
bring the object predictor to different observation distributions
outside of the object predictor training distribution, which
causes further compounding errors.

D. Comparison of Approaches to Object State Policies

Unfortunately, the end to end approach does suffer from
some sample inefficiency issues compared to object state
prediction, likely because of the increased difficulty in learning
from noisy object state observations. Figure 9 displays this
slight sample inefficiency gap, as the state based policies are
able to solve the task much quicker than the end to end
approach.

By virtue of the imitation learning approach only using the
policy trained off of object state to generate image observa-
tions, the imitation learning approach is much more sample
efficient than the end to end approach. While the current



(a) State-based policy grasps object
successfully

(b) Same policy with object pre-
dictor misses object slightly and
grasps around nothing

Fig. 8: Demonstration of the object prediction error issue.
Small errors in object state prediction cause the model to veer
off slightly from the desired trajectory and fail to correct itself,
leading to task failure

pipeline requires the policy to generate additional observations
to train the supervised predictor, this is not a significant issue
as the generated observations are used for supervised learning
rather than reinforcement learning, which empirically requires
much less time. Furthermore, this approach could be made
even more efficient by using the replay buffer as the source of
these additional observations rather than generating them from
scratch after training of the object state policy is finished.

Fig. 9: Demonstration of sample efficiency gap between end
to end approach and policy trained off of object state for the
Reach task. The red and purple lines represent the policy
trained off of object state with two different seeds, and the
yellow and gray lines represent the end to end approach with
two different seeds

VI. CONCLUSION AND FUTURE WORK

While the approach explored in this paper does show some
promise of closely imitating the paths of policies trained purely
on object state as evidenced qualitatively from video rollouts,
it does suffer from significant noise issues that make it difficult
to train pixel policies that operate with the precision necessary
to solve some robotics manipulation tasks. Common failure
cases as object occlusion and the robot leaving the field of
view make it difficult for any component to accurately predict
object state using only a camera view because of incomplete
information.

Because an issue with the precision of the model is dealing
with particular failure cases given an image observation that

does not adequately capture all information, it may be useful
to augment the state passed to the object predictor to include
extra information necessary to predict the object state. Rather
than solely operating on pixel observations from the agentview
camera, the object predictor could also be passed the robot
sensor information, giving the robot’s current position and
orientation (which could be helpful in calculating parts of
the object state that use the relative position of the robot).
Furthermore, it may be useful to also pass in an alternative
camera view to both help the robot better predict depth
information using multiple views and allow for a larger field
of view and avoid the case where the robot arm exits the field
of view.

Furthermore, to decrease the error of the object predictor
and allow for more precision in solving these robotic ma-
nipulation tasks, we could explore traditional techniques in
supervised learning as using more advanced state of the art
computer vision model architectures and data augmentations
to the data passed to the model. These approaches could lead
to a more accurate object predictor model overall and reduce
the compound error issues seen during this study.

Finally, we could use an additional tuning process to avoid
the compounding errors seen during training in the imitation
learning approach by running a process like the DAgger
algorithm, an imitation learning work that aims to correct
covariate shift issues as the one seen in this paper [10]. This
could include either generating many rollouts using the full
testing pipeline, retraining the object predictor on these new
rollouts, and repeating (as DAgger does) or running soft actor
critic again but with the current trained object predictor and
policy as an additional step to make the policy more robust to
object predictor noise.

Once these issues are fixed, a future extension of this project
to explore might be to use sim2real approaches as the ones
explored by Rao et al. in [9] to determine how well these
pixel policies actually translate in the real world and see if
the technique is genuinely applicable for learning robust pixel
policies for robots.

ACKNOWLEDGEMENTS

The author would like to thank Yuke Zhu and Zhenyu Jiang
for running the course CS391R and providing the opportunity
to do this project. The author would also like to thank
the rest of the UT Austin Robot Perception and Learning
Lab for providing a great learning environment for robotics
reinforcement learning.

REFERENCES

[1] Rail Berkeley. rlkit. https://github.com/rail-berkeley/rlkit,
2021.

[2] Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu,
Li Fei-Fei, Yuke Zhu, and Anima Anandkumar. SE-
CANT: self-expert cloning for zero-shot generalization
of visual policies. CoRR, abs/2106.09678, 2021. URL
https://arxiv.org/abs/2106.09678.

https://github.com/rail-berkeley/rlkit
https://arxiv.org/abs/2106.09678


[3] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang
Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingx-
ing Wang, Gang Wang, Jianfei Cai, and Tsuhan
Chen. Recent advances in convolutional neural net-
works. Pattern Recognition, 77:354–377, 2018. ISSN
0031-3203. doi: https://doi.org/10.1016/j.patcog.2017.10.
013. URL https://www.sciencedirect.com/science/article/
pii/S0031320317304120.

[4] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. 2018.

[5] Arise Initiative. robosuite-benchmark. https://github.
com/ARISE-Initiative/robosuite-benchmark, 2021.

[6] Max Jaderberg, Volodymyr Mnih, Wojciech Marian
Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with
unsupervised auxiliary tasks. CoRR, abs/1611.05397,
2016. URL http://arxiv.org/abs/1611.05397.

[7] Sascha Lange and Martin Riedmiller. Deep auto-encoder
neural networks in reinforcement learning. pages 1–8,
2010. doi: 10.1109/IJCNN.2010.5596468.

[8] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data. CoRR, abs/2004.14990,
2020. URL https://arxiv.org/abs/2004.14990.

[9] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine,
Julian Ibarz, and Mohi Khansari. Rl-cyclegan: Re-
inforcement learning aware simulation-to-real. CoRR,
abs/2006.09001, 2020. URL https://arxiv.org/abs/2006.
09001.

[10] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. No-regret reductions for imitation learning and
structured prediction. CoRR, abs/1011.0686, 2010. URL
http://arxiv.org/abs/1011.0686.

[11] Aravind Srinivas, Michael Laskin, and Pieter Abbeel.
CURL: contrastive unsupervised representations for rein-
forcement learning. CoRR, abs/2004.04136, 2020. URL
https://arxiv.org/abs/2004.04136.

[12] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto
Martı́n-Martı́n. robosuite: A modular simulation frame-
work and benchmark for robot learning. CoRR,
abs/2009.12293, 2020. URL https://arxiv.org/abs/2009.
12293.

https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://github.com/ARISE-Initiative/robosuite-benchmark
https://github.com/ARISE-Initiative/robosuite-benchmark
http://arxiv.org/abs/1611.05397
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/2006.09001
https://arxiv.org/abs/2006.09001
http://arxiv.org/abs/1011.0686
https://arxiv.org/abs/2004.04136
https://arxiv.org/abs/2009.12293
https://arxiv.org/abs/2009.12293

	Introduction
	Problem Statement

	Related Work
	Autoencoders and Auxiliary Loss Terms
	Data Augmentation

	Data
	Reach Task
	Lift Task

	Methods
	Main Components
	Object Predictor
	RL Agent

	Test Time Pipeline
	End to End Approach
	"Imitation Learning" Approach
	Comparison of Approaches
	Base Code

	Experiments
	End to End Approach Results
	"Imitation Learning" Approach Results
	Qualitative Analysis of Common Issues
	Object Occlusion
	Robot Out of View
	Object Prediction Error

	Comparison of Approaches to Object State Policies

	Conclusion and Future Work

