
Autonomous Pong Robot
Project Final Report

Carlos Cuartas
University of Texas at Austin

Email: carlos.cuartas@utexas.edu

Abstract—Many robots nowadays haven’t utilized the human
ability to throw, launch, or toss. These actions are used by
humans as a tool to extend reach for many possibilities and yet
the majority of robots don’t have the same capabilities. Robotics
with machine learning paired alongside launching capabilities
has the ability to reach a higher level of preciseness compared to
humans. This can be proven with a simple trial of making a robot
accurately launch a ball into a cup at many different distances.
This is done with polynomial regression, a spinning wheel, and
cup tracking. Keep reading to see how this robot function, what
challenges were met, and its results.

I. INTRODUCTION

In our day to day experiences, sometimes we need access
to certain areas we can’t reach physically. Like us, robots in
all environments have a limit to how far it can reach as well.
This is called their work envelope. Usually in order to increase
the work envelope the robot has access to, the size of the
robot increases as well. As the size of robots and their work
envelopes increase, their price and dead zone increases as well.
For humans, we compensate our short reach with throwing,
tossing, or launching objects. Unfortunately, not many robots
utilize this like humans do. This leaves us with a problem. If
a robot can accurately increase its work envelope greater than
its original working area, it could optimize factories, increase
use of household robots, and open many new possibilities for
robotics in general.

The overall plan has been to assemble a robot to shoot balls
into cups using a spinning wheel and servo motors. It will
be hosted on an Raspberry Pi 4 with an IRF3205 Mosfet
H-Bridge, two PCA9685 boards, a DC motor, a basic web
camera, an ultrasonic sensor, and some 3D printing to wrap it
all together. The early stages of this project can be seen here
in Figure 1.

Fig. 1. Computer Assisted Design Launcher in early stages

This paper will explain the steps the project went through
to go from idea to reality. It will cover the similar works, data
gathered, methods, experiments, and the results of this project.

II. GOALS

When this project was started, it was decided that the
goal of this project would be to reach 70% success rate or
higher. This was assumed due to the nature and uncertainty
of lightweight projectiles. The robot must retain perfect
accuracy through the vibrations of the 10,000 RPM motor,
the inaccuracy of the 16bit PCA9685 servo controller, and the
ball will even carry a spin that varies with how fast the motor
spins when shot thus disrupting the accuracy of the shot. Even
if all of the previous things mentioned function flawlessly
the ball will still be affected by ambient airflow ever so
slightly. More on the stochastic nature of this project will be
discussed at a later point in this paper. So in total, the main
goals for this robot will be as follows. It was also assumed
that with longer and longer distances, the success rate would
drop significantly. The distance this robot can shoot depends
on mainly the sensors since the motor can shoot ping pong
balls incredibly far. In order to keep it simple, it was decided
that this robot needs to be able to work within a standard
fold out table size of 200cm. A standard fold out table will
have a width of 76cm so if the robot is at the end of the
table it needs at least 20° of rotation to cover the table.

1) Make the ball in the cup 70% of the time a shot is taken
and calculate the speed at which the motor spins with
machine learning principles.

2) The cup can be anywhere between 0-200 cm of the robot.
3) The cup must be within a 30° angle of the robots facing

direction.
4) The robot must be able to take aim at cups by rotating

itself.

III. LITERATURE REVIEW

There is actually one paper similar to the concept of making
balls into cups called ”Robot Learning Project : Beer pong” by
Johann Isaak[2]. Funny enough it describes how a robotic arm
can acquire new skills, and specifically how to play beer pong
autonomously. Other than that paper, there aren’t many papers
similar to the idea of this project but there are many related
papers to individual concepts. Since polynomial regression
will be a significant part to my project I will be referencing



some papers that are similar and some that have helped along
with other papers with similar topics like tracking. Firstly there
was a paper written by Eva Ostertagová called ”Modelling
using polynomial regression”[3]. This paper is concentrated
on the application of polynomial regression models and has
proven useful for determining when and how to apply certain
equations to properly fit data. This paper is clearly similar to
the section of polynomial regression but the similarities stop
there. Another paper would be the ”Robust Tracking in Low
Light and Sudden Illumination Changes” written by Hatem
Alismail, Brett Browning, and Simon Lucey in 2016 [1]. This
helped with the robustness of tracking in all types of lighting
so this project could track in many environments.

IV. DATA

This robot will have two main functions for power calcula-
tion and tracking. First lets cover the power calculation data.

A. Power Calculation Data

In order to calculate the power to launch the balls we need
data of previous successful launches. This data was gathered
using a program made to do just that. This program will
activate the ultrasonic sensor to determine the distance of the
cup in front of the robot and use the power input into the
program to test if the ball will successfully be launched into
the cup. The program will then ask if the user to input if the
launch was a success. If it was, the program will store the
distance and power from the previous shot into a .csv list.

At times a shot will make it into the cup but due to the
ultrasonic sensor being buggy at times, it would recorded the
wrong distances occasionally. This could lead to problems
when fitting the data so data scrubbing of vastly stray values
was required. Here is an example of data before cleaning and
after cleaning shown in the Figure below.

Fig. 2. PWM x Distance traveled for balls launched

The data gathered follows a polynomial regression model
which is useful when there is reason to believe that relationship
between two variables is curvilinear. The data between speed
and distance in this case is curvilinear as shown in the Figure
above.

B. Cup Tracking Data

In order to create a custom object tracking model one must
first gather images of the object to track. For this project, only
cups would need tracking thus requiring our data to be images
of cups to track. A program was written to collect images
from the web camera at set intervals and this was used in

many different lighting conditions. A total of 100 images were
collected and were labeled using a software called labelIMG.
A custom model was trained using YOLOv5 from Ultralytics
with the data for 200 epochs at a batch size of 16. The data
used would look like the following Figure.

Fig. 3. Example Image Used for Training Object Tracking Model

Once all epochs were trained the model results were as
follows in the Figure below.

Fig. 4. YOLOv5 Training Results

V. METHODS

In order to get the results needed, the robot first required a
platform to run on with plenty of GPIO pins and fast speeds
for object tracing. It is also needed that the platform is python
based since the libraries required are PyTorch and OpenCV.
It was decided that the NVIDIA Jetson Nano would be used
due to its high performance and GPIO pin accessibility like
the Raspberry Pi but with better CUDA support for computer
vision.

Unfortunately, it was revealed that the Jetson Nano does not
do real time processing when using the ultrasonic sensor. This
causes all distances measured to become vastly unreliable. It
was then decided to implement the Raspberry Pi 3b+ since it
had a similar structure as the Jetson Nano and It was already
owned. Unfortunately enough the Raspberry Pi 3b+ utilizes a
32 bit system architecture and PyTorch only functions on a 64
bit architecture. This then required the robot to be hosted on
a Raspberry Pi 4 with a 64 bit operating system to be ran for
object tracking. This board is shown in the Figure below.



Fig. 5. Raspberry Pi Setup

In case it isn’t known already, the Raspberry Pi is a low
cost, credit-card sized computer that can be used just like the
Nvidia Jetson Nano.

In order to launch the balls the robot is using a DC motor
powered by an IRF3205 Mosfet H-Bridge in order to utilize
the varying speeds PWM signals provide. To have access to a
PWM signals, the pin for PWM from the board could be used
but board can only control one PWM signal. In order to fix
this problem I decided to use the PWM from the PCA9685
boards. Though this led us into another problem of frequency.
The frequency dc motors run on are 400+ Hz at least but the
PCA9685 still needs to power servo motors at a frequency of
50 Hz for the shooting and aiming. Unfortunately the board
can only have one frequency at a time so I decided to chain
two PCA9685s to hit both frequencies at the same time and
power all servos and motors without restriction. This set up
was demonstrated here in Figure 3.

Fig. 6. Circuit Layout Plan for Electronics

The hardware was pieced together using many different
types of boards which brings along a need of many different
types of power sources. The robot required a total of 3 power
sources to function.

• A 9V 2A power supply for the PCA9685 Boards and
servo motors

• A 12-24V 6A power supply for the H-Bridge and DC
motor

• And a 5v 3A power supply for the Raspberry Pi 4

This project will be divided into two main functions. The
first will be the Power calculations and the other will be the
yaw calculations.

1) Power Function: The robot will calculate the power
needed by interpolating the power from the data gathered with
the ultrasonic sensor data gathered earlier. By determining the
distance from the ultrasonic sensor to the cup and comparing
that distance to the few data points gathered beforehand it is
possible to extract an accurate power value that corresponds
to the distance of the cup. One way of doing this would be by
using linear regression for this prediction. Though the problem
with this is that the data gathered is not linear. Since this the
data gathered doesn’t fit with a linear regression expression
but rather a polynomial expression, polynomial regression is
needed as shown in the Figure.

Fig. 7. Linear vs Polynomial Regression with data gathered

If the linear regression was used for this data it would
be landing near the cup and almost never in the cups thus
resulting in a lower accuracy rate. Thankfully polynomial
regression can be applied on this data. The polynomial you
see there has a degree of 2 but there could be a better fitting
polynomial. In the Figure below, the degrees of the polynomial
equations are increasing and yet its hard to determine which
equation fits the best.

Fig. 8. Polynomial Regression with 1,2,3,4,5, and 6 Degrees



Its quite difficult to tell which degree best matches the
gathered data but its clear that if the degree of the polyno-
mial passes a certain threshold it will run into some severe
over-fitting. So to determine the best fit possible, Bayesian
Information Criterion (BIC) is applied. BIC will result in a
value for every order used and to determine which degree
best matches the data in question.

Bayesian Information Criterion

BICk = n ∗ log(SSϵ) + k ∗ log(n)

k would be the number of degrees we want to test which
in our case would be 6, n is the number of data points we
have which would be 20, and SSϵ is the sum of squares of
the residuals. The Residual sum of squares, or as many use it
as RSS, is written out as follows.

Residual Sum of Squares (RSS)

RSS =

n∑
i=1

(yi − f(xi))
2

yi is the ith value of the variable to be predicted, f(xi) is
the predicted value of yi, and n is the amount of data. RSS is a
measure of the discrepancy between the data and an estimation
model. Typically, a small RSS indicates a tight fit of the model
to the data thus its use being crucial to Bayesian Information
Criterion. With that said lets look at the results BIC revealed.

Fig. 9. Bayesian Information Criterion Results

When choosing from many degree models, usually models
with the lowest BIC values are used. The Bayesian Information
Criterion is an increasing function of the error variance σ2 and
also a rising function of k. Usually unexplained variation in the
dependent variable increase the value of BIC but sometimes
a lower BIC does not completely indicate one model is
better than another unless a significant change in value exists.
Because it involves a point system, BIC sometimes is a vague
gauge to determine the best fitting model. It is also important
to understand that BIC can be used to rank estimated models
only when the data used is identical for all models being

compared. Another thing about BIC is that it suffers from
two main limitations.

1) Approximation is only valid for sample size n much
larger than the number of parameters in the data being
used.

2) BIC cannot handle complex collections of data in high-
dimensions.

An example of a case where BIC couldn’t be used in this
project would be if the data gathered was so small that it
matched with the amount of degrees the program was testing
for. Thankfully this problem was averted with a simple use
of more data points. With this said lets look at the Figure for
BIC.The lowest value BIC is on the fourth degree polynomial.
The third degree is a close second so either of these could be
used, but for now the fourth will be chosen to run as shown
in the Figure below.

Fig. 10. Best Fitting Degree (Fourth Degree Polynomial)

Once the best degree to use is calculated from polynomial
regression and Bayesian Information Criterion the program
will use the interpolated polynomial line to calculate the
power level from using the distance value from the ultrasonic
sensor. This power value is sent from the Raspberry Pi to
the PCA9685 to convert the power value to a PWM signal.
The power is the level at which the PWM signal will operate
at or simply, the Duty Cycle. The PCA9685 board will then
send this duty cycle to the MOSFET H-Bridge to amplify the
duty cycle to 24 volts to operate the DC motor at the desired
power level. The motor is adhered to the wheel thus causing
the wheel to rotate at the desired duty cycle. This is clearly
demonstrated in the Figure below.



Fig. 11. Shooting Mechanisms

Once the desired speed is reached, the robot will send
a signal to the servo motor through the PCA9685 to
rotate the linear actuator forward powered with the servo
motor. This will push the ping pong ball forward into
the spinning wheel resulting in the ball being launched.

2) Yaw Section: This section is about the targeting in the
yaw motion. The Yaw aiming function works by utilizing three
things.

1) A Redragon GW800 1080P USB Webcam
2) One Servo Motor
3) And Object Tracking using OpenCV and PyTorch

The main purpose of this function is to point the barrel at
the targeted cup by turning the base which is, in theory, a 3D
printed lazy Susan with a geared servo motor attached to it
to rotate it. The robot knows where to turn based on if the
cup is to the right or left from the center of the robot when
being tracked. The tracking initially consisted of a simple Hue
Saturation Value color search using OpenCV. Once the object
was detected the program would apply multiple closing kernels
to remove false negatives and remove false positives. This
looked like the Figure below.

Fig. 12. HSV Tracking Using OpenCV

The green line will indicate the center of the cup and the
gray two lines will be the threshold area of no action in order
to keep the program from adjusting indefinitely. The robot will
rotate clockwise if the green line is to the right and vice versa.

Unfortunately enough this method will not work in any
other setting of lighting since it is not adaptive to color
changes. This is due to the HSV method requiring a range
of hue saturation and value to look for, but when the ambient
lights change a small amount, the tracking fails. In order to fix
this a custom object tracking model was made using PyTorch,
OpenCV, and YOLOv5 from Ultralytics. As stated earlier,
the data used to train this model was 100 images of cups
in different lighting and different types of obstruction.

EXPERIMENTS

To determine how well this robot preforms, a series of
experiments were tested. The first test was an accuracy test.
This accuracy test was preformed with 25 launches at 7
different distances for the cups. To clarify, the steps taken
to gather this data was to first position a cup at a set distance,
then to run the autonomous launching program 25 times, and
to mark each time a ball was made into a cup. This process
was done for different distances seven times for a total of 125
launches. This data for the accuracy is shown below in the
Figure.

Fig. 13. Accuracy Results With Distance

As seen above, the accuracy is very high until it falls
off significantly after 100 cm. It was understood from the
beginning that this robot would carry some small errors into
the launches. It was also theorized that with longer and
longer distances introduced, the small errors would compound
and slowly skew the preciseness of the launches at greater
distances. Unfortunately, the relationship between the com-
pounding errors and the distance was much higher than what
was originally thought. This is shown clearly in the Figure
below.



Fig. 14. Sparsity of Launches

As seen above the 30 cm distances has less of a spread
compared to 110 cm launches. Standard deviation calculations
were done in the distance axis and was determined that one
standard deviation at 30 cm would be 4.4 cm compared to 7.2
cm for 110 cm. This caused long ranged shots past 100 cm to
drop in chance of success, but within the 100 cm range nearly
all shots would be made.

In order to run experiments on the cup tracking to see
how well it preforms a multiple environments were created.
These environments included bright, dim, and dark lighting
along with obstructing and non obstructing environments. The
results in terms of cup tracking were very surprising. These
benchmark environments were only used to test the model and
were not used to train on. The results are shown below for the
benchmark environments while using the custom model made
using Pytorch.

Fig. 15. Custom Model Trained in Multiple Settings

Surprisingly all cases passed with flying colors in every
environment. The dark environments were used as a limit
test and was not expected for it to track well at all but
surprisingly it worked with no problem. Additionally the
obstruction environment was challenging and expected to falter
with some false positives the most but even in the darkest
environment it passed.

CONCLUSION

The launching results were quite similar to what was orig-
inally hypothesized with a few exceptions. It was understood
from the beginning that this robot wouldn’t be perfect and
that no matter what I did it would carry some small errors
into the launches. It was also theorized that with longer and
longer distances introduced, the small errors would compound
and slowly skew the preciseness of the launches at greater
distances. Unfortunately, the relationship between the com-
pounding errors and the distance was much higher than what
was originally thought. This caused long ranged shots past
100 cm very unlikely to make if first shot, although most
people wouldn’t be able to make a cup that far in five tries
and much less in one. Nonetheless the results for the sub 100
cm distances were shocking as it worked with great precision
and accuracy.

The cup tracking results were not what was expected at
all. Humans struggle to see in the darkness and tracking in
the darkness where little to no light passes would be nearly
impossible. At least that was what was expected. This model
trained surpassed all expectations in tracking with obstructions
or no obstructions. As well in tracking in light, dim, and dark
lighting. This was a success since even the combination of
these hard to overcome problems were such simplicities for
this custom cup tracking model.

Although there were many possible upgrades that could
make this project better. Things like more refined launches,
better preciseness, a Gaussian process on the data to predict
power levels, better distance sensor, or even implementing
reinforcement learning. I learned that if a small problem arises,
not to overlook it but rather grind out all the possible solutions
and to not be afraid to implement them even if it complicates
things. Thanks to this project I learned a lot more about best
fit models and how hard it is to gather, clean, and use data for
machine learning.

In conclusion, after applying Polynomial Regression to a
robot with perception and interaction capabilities, We can
now successfully make any cup within a 100cm range on the
first attempt and eventually make any cup within a 200 cm
range after about 5 attempts and also it can now track cups in
all lighting environments as well as even tracking cups with
objects obstructing the way. I classify this robot as a success
in proving that applying robotics with machine learning and
launching should be a feature in more robots across the world.

REFERENCES

[1] Hatem Alismail, Brett Browning, and Simon Lucey. Ro-
bust tracking in low light and sudden illumination changes.
pages 389–398, 10 2016. doi: 10.1109/3DV.2016.48.

[2] Johann Isaak and M. Krönig. Robot learning project :
Beer pong. 2013.

[3] Eva Ostertagova. Modelling using polynomial regres-
sion. Procedia Engineering, 48:500–506, 12 2012. doi:
10.1016/j.proeng.2012.09.545.



Fig. 16. Final Robot


	Introduction
	Goals
	Literature Review
	Data
	Power Calculation Data
	Cup Tracking Data

	Methods
	Power Function
	Yaw Section



