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Abstract—In this work, we explore adding individualized,
selfish extrinsic reward signals to see how they would impact
agents in a multi-agent, sparse reward synergistic task with
an intrinsic motivation reward. While prior work has mainly
focused on getting agents to work together in multi-agent tasks
where working together is essential to achieving a goal, scant,
if any, attention has been placed upon the situation where an
agent may have additional motives external to the synergistic
task. For example, in soccer, agents have to work together in
a team to score goals (the positive reward), but each agent can
get a yellow (warning) or red (sending off) card for individually
committed fouls, which may lead them to pursue actions that
may not optimize the team’s performance. To study this situation,
we explore adding both an intrinsic, synergistic reward using a
dynamics model as well as an individual extrinsic signal (either
reward or penalty) on the Two-Arm Handover task. While time
and computational limits only allowed us to run 1000 updates
per experiment and thus prevented the robots from being able
to complete the task, we hope that our work will prove useful
for future researchers to explore this problem in the future.

I. INTRODUCTION

Traditional reinforcement learning methods have been
shown to be very effective in having individual agents learn a
task both where it acts individually to maximize performance
in an environment (Mnih et al., 2013) as well where it learns
to maximize its performance against an adversary (Silver et
al., 2016, Silver et al., 2017). However, such strategies do
not translate very well in environments where multiple agents
must engage in synergistic behavior, especially when positive
rewards come by rarely (for example, having a team of robots
work together to play baseball or soccer). This is partially
because combining sparse rewards with multiple agents in
a synergistic environment makes the action space enormous
and difficult to explore effectively.

To solve this problem, the reinforcement learning
community has generally employed intrinsic motivation
(Schmidhuber 1991). One approach to intrinsic reward
functions is curiosity, or having the environment provide
agents a reward whenever they explore a state/action pair
that is deemed worthwhile to explore. For example, “unseen”
state/action pairs are worth exploring because they allow
the agent to learn a policy that has breadth (Stadie et al.,
2015). The hopes of such a strategy are that the agent will
put greater emphasis on exploring the action space and thus
have a higher probability of formulating policies emphasizing
greater synergies with other agents. Conceptually, this can

be seen as a more sophisticated version of epsilon-greedy
exploration, where a random action is taken with ϵ probability,
and the learned policy chooses the action with the other
1 − ϵ probability. In this case, our goal is to increase ϵ to
enable sample-efficient learning and maximize exploration of
discovery of synergistic policies.

In general, using intrinsic motivation improves performance
in synergistic environments, including robotic control tasks
(Oudeyer et al., 2007) and Atari games (Bellemare et al.,
2016, Pathak et al., 2017). Further enhancements have
been proposed to intrinsic motivation, including using the
discrepancy of predictions between a joint and a compositional
prediction model (Chitnis et al., 2020).

However, to our knowledge, there have not been any
experiments combining a positive, intrinsic reward framework
with extrinsic, individual-based penalties. For example, while
a game of soccer provides positive rewards for the whole
team in the form of scored goals, there are also individual
penalties for fouls (including the agent potentially being sent
off from the game due to excessive fouling). Alternatively,
in a corporate environment where team members must work
together to finish a project, the team as a whole may receive
positive reinforcement for the completion of the task, but
each member could be held individually responsible and
terminated from employment for their own shortcomings. In
the latter situation, there is even a possibility of the extrinsic
penalty being adversarial (i.e., in the form of selfish actions)
itself, with individuals also competing for limited promotion
spots to advance their careers. Ultimately, most prior work
exploring synergistic behavior have generally abstracted away
these situations, leaving open the question of how providing
extrinsic rewards for selfish or adversarial actions affect
the ability of intrinsic motivation to encourage synergistic
behavior.

In this paper, we employ Robosuite (Zhu et al., 2020)
to simulate the Two-Arm Handover task, using a two-layer
deep Actor-Critic (Konda and Tsitsiklis, 1999) reinforcement
learning algorithm, a two-layer deep dynamics model and
a curiosity generator to provide intrinsic rewards, and an
extrinsic penalty and reward function either penalizing or
rewarding an agent for dropping the ball during the task. Our
goal was to see how these individualized extrinsic signals



would ultimately impact the model’s overall performance.
While heavy constraints on computational time and resources
resulted in none of our agents being able to successfully
complete the task and thus receive a reward (making the
effectiveness of our proposed method undetermined), we
nevertheless hope that our work will help future researchers
with greater computational resources explore the problems
we have outlined with our proposed methods.

II. RELATED WORK

A. Modifying Intrinsic Motivation to Encourage Synergy

One alternative proposal to guide exploration and boost
synergy has been to employ social motivation (Jaques et al.,
2019). Specifically, this proposed reward function seeks to
encourage agents to select actions that have the largest impact
on the actions other agents select. LOLA (Foerster et al.,
2018) takes a similar approach, although it does away with
the emphasis on exploration and focuses entirely on having
agents’ policies being influenced by their impact on other
agents.

Chitnis et al. (2020) questions whether exploration is even a
good predictor of synergy in the first place, preferring to view
synergistic actions are those where agents simultaneously
acting together change the environment differently than if
they acted sequentially. Based on this, they tested out two
new intrinsic motivation functions: first, using compositional
prediction error, and second, comparing prediction disparity
between the result of actions of multiple agents taken
jointly and sequentially (the latter having the advantage
that the intrinsic reward function is now also analytically
differentiable to the action, allowing for more informative
gradient updates). Abe et al. (2021) also ends up doing
away with the exploration focus entirely in optimizing
the performance of agents in soccer, getting surprisingly
strong results from choosing a simple intrinsic reward of +1
whenever each agent is involved in the ball for the first time.
Our work builds upon these by including additional extrinsic
reward signals that would theoretically impede intrinsic
performance and seeks to evaluate the extent that this actually
occurs.

B. Multi-Agent Adversarial Reinforcement Learning

Numerous reinforcement learning problems can be ex-
pressed as tasks that are adversarial to some degree. A key
example of this is games, where models such as DeepMind’s
AlphaZero (Silver et al., 2016) end up playing games of
AlphaGo against itself to maximize its performance against its
opponents in test time. BiCNet (Peng et al., 2017) takes this
a step further by training multiple agents in a task where two
teams attempt to beat each other in Starcraft combat games,
thus needing both synergistic behavior with each member
of the team and adversarial behavior with each member of
the opposing team. Multi-agent adversarial learning can also

be done in inverse reinforcement learning (Yu et al., 2019).
Ultimately, while our selfish extrinsic reward signal can be
fully adversarial like in these situations, we also consider
extrinsic rewards that would still in theory leave some room
for intrinsic synergistic learning to occur.

III. DATA

For our experiments, we employed Robosuite’s Two-Arm
Handover simulation to collect data. In this environment,
two arms attempt to move an object from one table to the
other, and hand-off the object to the other arm in the air.
This problem lends itself well to our research, as synergistic
behavior is required for success (both arms meeting, and
the second arm setting the object down on its table), and
extrinsic selfish individual rewards which correspond to one
arm dropping the object. The unselfish extrinsic reward is
setting the hammer on the final table.

Fig. 1. Robosuite Two Arm Handover Problem (Zhu et al., 2020)

To form our observation space, we took the proprioception
observations, arm joint positions (sine and cosine), arm
joint velocities, effector pose, gripper finger positions, and
gripper finger velocities of each robot as well as the hammer
and object states. We concatenated these together to make
two observation vectors (with each robot getting its specific
observations as well as the common hammer and object
states). While we did not make use of the environment-
provided image data, we strongly recommend future work
to do so. To update our Actor-Critic, dynamics, and rollout
models, we had to postprocess the observation data to get
a clipped version of our observation state, the mean of the
observations, and the variance of the observations. In contrast,
we simply used the action spec property of the environment
without any modifications to provide each robot with its
possible action space.

Due to time and computational constraints, we were only
able to run 1000 simulation runs of 2 steps each (1 for
each robot), although given the robots’ inability to find a
policy that completed the task in any of our experiments,
we strongly recommend that future practitioners dramatically
increase this to something more reasonable (e.g. the 1 million
training steps used by OpenAI on their MuJoCo benchmarks



or the 100,000-200,000 training steps that Chtinis et al., 2020
ran their experiments on).

IV. METHODS

A. Base Reinforcement Learning Algorithm

We employed a deep Actor-Critic algorithm with 2-layer
neural networks being used for both our policy and value
functions. In this algorithm, the actor proposes an action and
takes it, and the critic informs the actor how good the action
was by computing the value function.

Algorithm 1 is a temporal difference learning policy-based
reinforcement learning algorithm. The procedure will repeat
until convergence (Karunakaran 2020).

Algorithm 1 actor-critic
1: procedure ACTOR-CRITIC(st) ▷ Takes in current state
2: at ← sample from actor’s policy πθ

3: Aπθ
(st, at) = r(st, at) + Vπθ

(st+1)− Vπθ
(st) ▷

advantage function
4: ∇J(θ) ≈ ∇θlogπθ(at, st)Aπθ

(st, at)
5: θ = θ + α∇J(θ) ▷ update policy parameters
6: w = w + αAπθ

(st, at) ▷ update critic weights
7: end procedure

Our actor critic algorithm was comprised of a policy and
value function, both of which were comprised of two-layer
neural networks. Each of these employed ReLU for the
first activation function and Tanh for the second activation
function, with the only difference being that the output
dimension of the policy function was 64 while it was 1 for
the value function. All neural networks were trained with the
Adam optimizer (Kingma and Ba, 2014) with linear decay.
Our policy learning rate was set to 1e-4, our value function
learning rate was set to 3e-4, and dynamics learning rate was
set to 3e-4.

Other hyperparameter choices for our policy gradient
algorithm include our selection of the clipping parameter to
be 0.2, the entropy coefficient to be 0.01, and the dynamics
coefficient to be 0.5. Finally, we employed rollout in order
to simulate possible simulations from our current state due
to the need to model uncertainty in a robotics environment,
although we did not employ a supervised learning method to
do so due to concerns over computational cost.

Our intrinsic reward function was similar to Chitnis et al.
(2020) introduced - each agent had a 3 layer deep neural
network (activation functions ReLU, ReLU, and Tanh, respec-
tively) dynamics model that takes in the current environment
state (∈ Senv), the current agent state (∈ Sagent), and an action
(∈ Aagent). If we call one agent A and the other agent B, we

denote the dynamics model as fA : Senv × SA × AA → Senv

(resp. fB). Consider the composition of fA and fB :

f composed(s, a) = fB(fA(senv, sA, aA), sB , aB)

We now give our intrinsic reward function, where s is initial
state, a = (aA, bB) is the tuple of actions taken by both
agents, and s′ is the next state. Intuitively, for synergistic
actions rintrinsic is likely to be high, as f composed will predict
the environment if the actions are taken sequentially, which
would be different from the environment resulting from the
actions taken jointly, s′.

rintrinsic(s, a, s′) = ||s′ − f composed(s, a)||22
Alternative methods we considered to compute intrinsic

reward included calculating the squared distance between the
dynamics model’s predicted output pt an actual environment
yt at each step, but we decided against this due to Chitnis
et al. (2020)’s empirical demonstration that this was a
suboptimal formulation of intrinsic reward.

Our individualized selfish extrinsic reward was a constant
value (either +1 or -1) provided for an action under certain
conditions. These conditions are if an agent was the one
to perform the action (out of all other agents), and making
sure the action did not lead to a unselfish extrinsic reward.
Specifically for the Two Arm Handover problem, we defined
a selfish reward for one arm dropping the object (hammer)
on the floor. The unselfish extrinsic reward was setting the
hammer on the final table. This reward would be added to the
unselfish extrinsic reward for the agent that received it, with
the combined extrinsic reward being backpropagated through
the Actor-Critic neural network.

B. Code Implementation

We based a significant portion of our code on Michaux and
Qing (2018)’s intrinsic motivation implementation. However,
because their experiments involved training an individual
agent to learn OpenAI’s FetchPushv1 simulation task with
the Gym library (Brockman et al., 2016), we still had to
make significant modifcations to conduct our experimentation.
We expanded their code to include support for two agents,
rewriting the intrinsic motivation function to more closely
follow Chitnis et al. (2020)’s work, being able to take as
input Robosuite’s data formats, directly included relevant
source code from OpenAI’s Baselines library (Dhariwal et
al., 2017) to postprocess our observation data due to the
methods the repository’s authors used being deprecated, added
our extrinsic reward/penalty from dropping the object, and
myriad additional modifications that were necessary to get
the base code to compile and run successfully. We made use
of PyTorch (Paszke et al., 2019) to write our code and used
Google Colab to finalize and train our models. Because the
deep neural networks we employed were relatively shallow,
the primary bottleneck of our implementation was waiting for
the Robosuite environment to return the specific environment



observations and rewards. As such, we ended up running our
experiments on CPU, using a 2.2 GhZ single core Intel Xeon
CPU on Google Colab.

V. EXPERIMENTS

We ran eight experiments in total, with four experiments
having an episode length of 2000 steps (1000 updates, 1 step
per agent) and the other four having an episode length of 500
steps (thereby resulting in us having four different episodes
of training). The four experiments for each of these cases
included using only the unselfish extrinsic reward; using the
unselfish extrinsic reward and the intrinsic reward; using
the unselfish extrinsic reward, the intrinsic reward, and a
selfish extrinsic reward of -1 (where the agent is penalized
for dropping the object); and using the unselfish extrinsic
reward, the intrinsic reward, and a selfish extrinsic reward of
1 (where the agent is rewarded for dropping the object).

The reason for the two selfish extrinsic reward cases is
to explore a situation where one agent is motivated to act
directly adversarial to the task itself, whereas in the other, the
robot merely has the chance of being discouraged to move
the object it all in hopes of not getting a negative reward. The
latter reward strategy still can work with synergy, though,
because not dropping the object is essential to completing the
actual task. We used two Panda robots for all experimentation.

Of the four different types of experiments across a given
episode framework, two of them (no intrinsic or selfish
extrinsic, intrinsic but no selfish extrinsic) were designed to
be baselines to compare the results of the experiments with
agents motivated by selfish extrinsic reward signals with.

Unfortunately, due to the heavy computational limitations
of our experiments, our agents were neither able to complete
the task during any episode nor were even able to find the
hammer in the first place (we are also open to the possibility
that some undetected error in our code formulation may
have hampered results as well, although we did not see any
evidence to support this conclusion in our training runs).
Thus, neither the positive nor the negative selfish extrinsic
reward was able to make an impact on the behavior of either
agent, leaving the questions we had formulated regarding
selfish extrinsic reward signals with an indeterminate answer.
The intrinsic rewards ended up being the only way that
we could influence the robots’ behavior, although the value
function loss in robots with intrinsic motivation only ended
up exponentially increasing across the 1000 updates due
to the robots’ inability to discover a goal-based, extrinsic
reward. In contrast, the value function loss steadily decreased
when no intrinsic motivation was present.

Reward Type 1 2 3 4
Extrinsic/Maximum 0 0 0 0

Extrinsic/Mean 0 0 0 0
Extrinsic/Median 0 0 0 0

Extrinsic/Minimum 0 0 0 0
Intrinsic/Maximum 0 0.0264 0.0388 0.0426

Intrinsic/Mean 0 0.0257 0.0343 0.0397
Intrinsic/Median 0 0.0257 0.0343 0.0397

Intrinsic/Minimum 0 0.025 0.0298 0.0368
Selfish Extrinsic/Maximum 0 0 0 0

Selfish Extrinsic/Mean 0 0 0 0
Selfish Extrinsic/Median 0 0 0 0

Selfish Extrinsic/Minimum 0 0 0 0

Table 1: Unselfish extrinsic, intrinsic, and extrinsic reward
data at the 1000th update for each experiment with episode
length of 1000 updates of 2 steps each. Experiment 1 used
only the unselfish extrinsic reward; Experiment 2 used only

the unselfish extrinsic reward and the intrinsic reward;
Experiment 3 used the unselfish extrinsic reward, the

intrinsic reward, and a selfish extrinsic reward of -1; and
Experiment 4 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of 1.

Reward Type 1 2 3 4
Extrinsic/Maximum 0 0 0 0

Extrinsic/Mean 0 0 0 0
Extrinsic/Median 0 0 0 0

Extrinsic/Minimum 0 0 0 0
Intrinsic/Maximum 0 0.0243 0.0245 0.0393

Intrinsic/Mean 0 0.0241 0.0227 0.0329
Intrinsic/Median 0 0.0241 0.0227 0.0329

Intrinsic/Minimum 0 0.0239 0.0208 0.0266
Selfish Extrinsic/Maximum 0 0 0 0

Selfish Extrinsic/Mean 0 0 0 0
Selfish Extrinsic/Median 0 0 0 0

Selfish Extrinsic/Minimum 0 0 0 0

Table 2: Unselfish extrinsic, intrinsic, and extrinsic reward
data at the 1000th update for each experiment with episode
length of 250 updates of 2 steps each. Experiment 1 used

only the unselfish extrinsic reward; Experiment 2 used only
the unselfish extrinsic reward and the intrinsic reward;
Experiment 3 used the unselfish extrinsic reward, the

intrinsic reward, and a selfish extrinsic reward of -1; and
Experiment 4 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of 1.

Loss 1 2 3 4
Loss/DeltaPi -2.8e-5 6.54e-5 -2.5e-4 5.4e-5
Loss/DeltaV -9.3e-10 -0.00977 -0.0244 -0.084

Loss/Dynamics 0 3.9e-5 1.9e-5 7.5e-05
Loss/Entropy 464 23.2 23.6 23.8

Loss/KL 228 8.97 22.2 10
Loss/Policy 0.024 -0.124 -0.113 -0.0446

Table 3: Data relating to the value of various loss functions



at the 1000th update for each experiment with episode length
of 1000 updates of 2 steps each. Experiment 1 used only the

unselfish extrinsic reward; Experiment 2 used only the
unselfish extrinsic reward and the intrinsic reward;

Experiment 3 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of -1; and

Experiment 4 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of 1.

Loss 1 2 3 4
Loss/DeltaPi -3.6e-5 1.34e-3 -1.8e-4 6.3e-4
Loss/DeltaV 2.2e-10 -0.00391 -0.00488 -0.0112

Loss/Dynamics 0 9.3e-5 8.97e-5 1.1e-4
Loss/Entropy 464 22.8 23 24.7

Loss/KL 228 6.85 10.7 11.9
Loss/Policy 0.0261 -0.116 -0.104 -0.129

Table 4: Data relating to the value of various loss functions
at the 1000th update for each experiment with episode length
of 250 updates of 2 steps each. Experiment 1 used only the

unselfish extrinsic reward; Experiment 2 used only the
unselfish extrinsic reward and the intrinsic reward;

Experiment 3 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of -1; and

Experiment 4 used the unselfish extrinsic reward, the
intrinsic reward, and a selfish extrinsic reward of 1.

VI. DISCUSSION AND FUTURE WORK

The first and most obvious step to expand upon our work
would be to run our experiments for significantly longer. For
perspective, Chitnis et al. (2020) did not end up getting a task
completion rate greater than 0 until it ran for at least 10,000
steps on Mujoco’s bottle task and 20,000 steps on Mujoco’s
ant push task with a 4-layer neural network for the policy,
value, and dynamics functions. However, the authors also
hand designed a set of specific features to aid the system in
completing the desired tasks, something that we were unable
to do. We recommend that future researchers look into better
hand design of features or by using demonstration to teach
the robots the features themselves.

After that step, there are numerous avenues to take this
project further. We can take advantage of the image data and
concatenate a representation of it to the other observations
we made us of. This can either be done by making use
of a convolutional or Vision Transformer (Dosovitskiy et
al., 2020) feature encoder or by making use of an implicit
neural representation. In the latter case, SIREN (Sitzmann et
al., 2020) is likely a good starting point to encode robotic
perception data. In addition, this can also be set up as a
multitask learning problem similar to GIGA (Jiang et al.,
2021). Please note, however, that taking such steps would
make the use of a GPU essential to have reasonable training
speeds, especially considering the relatively large model sizes
of modern robot perception and computer vision models.

In addition, given that our reinforcement learning neural
networks were relatively shallow (2-3 layers), using more
sophisticated (for example, deeper) architectures might be
a good avenue to explore. However, it should be noted
that these steps should be taken in tandem with increasing
computational power and access to data, something we were
largely unable to do.

We trained each agent’s dynamics model by using the
agent’s action and the observed states before and after. As
each agent had its own dynamics model, we do not want
the other agents to interfere in this training. Based on this,
we could improve upon our current training of the dynamics
model by simply ignoring synergistic datapoints, where the
other agent had a vital part in influencing the ”after” state.
This could be accomplished by looking at the intrinsic reward
of a particular step.

Finally, there are numerous avenues for additional extrinsic
reward signals designed to impede synergistic intrinsic
learning. For example, we can penalize an agent if it
interferes with another agent (e.g. if B is in A’s way and
thus blocks A from completing its task). This could be
accomplished by having a network that predicts environments
assuming other agents do not exist. If the true environment is
different than what A predicted, and A would have received a
reward, then penalize B. Alternatively, it would be of interest
to explore using intrinsic rewards (both with and without the
adversarial extrinsic reward) in a situation where synergy
would actually hurt overall performance. Lastly, it would be
of interest to see how our methods would perform on other
robotic domains (e.g. Two-Arm Peg In Hole), with other
robots (e.g. Sawyer, Jaco), or with greater than 2 agents.

VII. CONCLUSION

In this work, we studied the impact of adding a selfish
extrinsic reward signal to a synergistic intrinsic motivation
reward in the Two Arm Handover problem. While heavy
computational limitations made our hypothesis and evaluation
of the effectiveness of our proposed methods indeterminate,
we are optimistic that future work can take off from where
we have left off and provide a definitive answer.
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X. GRAPHS

We present the value function loss graphs for 3 experiments,
each run for 1000 steps. We also thought it would be of interest
to show the mean intrinsic reward graphs.

Fig. 2. Baseline: No Intrinsic Motivation and No Selfish Extrinsic Rewards

Fig. 3. Baseline: Intrinsic Motivation but No Selfish Extrinsic Rewards

Fig. 4. Intrinsic Motivation and Selfish Extrinsic Rewards (+1)

Fig. 5. Mean Intrinsic Reward. Experiment: Intrinsic Motivation but No
Selfish Extrinsic Rewards

Fig. 6. Mean Intrinsic Reward. Experiment: Intrinsic Motivation and Selfish
Extrinsic Rewards (+1)
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