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Abstract—Grasp detection in clutter requires the robot to
reason about the 3D scene from incomplete and noisy perception.
In this work, we draw insight that 3D reconstruction and grasp
learning are two intimately connected tasks, both of which
require a fine-grained understanding of local geometry details.
GIGA has already implemented this sinergies between grasp
affordance and 3D reconstruction through multi-task learning
of a shared representation. It takes advantage of deep implicit
functions, a continuous and memory-efficient representation, to
enable differentiable training of both tasks. Our method is
inspired on GIGA and adds a human like gripper design by
mimicking some biomechanical and physiological grasping pat-
terns of the human hand. We train the model on self-supervised
grasp trials data in simulation. Evaluation is conducted on a
clutter removal task, where the robot clears cluttered objects by
grasping them one at a time. This is introduced in a simple,
low cost and effective implementation that outperforms GIGA in
over 5% in terms of grasp success rate and over 15% in previous
state-of-the-art baseline algorithms.

I. INTRODUCTION

Generating robust grasps from raw perception is an essential
task for robots to physically interact with objects in unstruc-
tured environments. Reliable robotic grasping is challenging
because there is high uncertainty in object properties such as
object shape, pose, material properties, and mass [22]. One
great remaining challenge in robot manipulation is achieving
human dexterity on grasping [18]. Therefore, understanding
the way human grasp objects, knowing the kinematic implica-
tions and limitations associated with each grasp, and knowing
common used patterns is a key component on this goal [28].
For this task, the geometry and physical properties of objects
from partially observed visual data, infer a proper grasp pose
in 3D position and orientation, and move the gripper to the
desired grasp configuration for execution. Here we consider
the problem of 6-DoF grasp detection in clutter from 3D point
cloud of the robot’s on-board camera with a simple gripper
design that is similar to acts based on human hand grasping
patterns. Our goal is to predict the type of grasp pattern that
the robot should used based on human hand biomechanics on
a clutter of objects using GIGA [12] for partial point cloud.

Previous work on robot grasping has cast it as a geometry-
centric task, typically assuming access to the 3D model of
the object [12, 8]. Grasps are thereby generated thorough
optimization of analytical models of constrains derived from
geometry and dynamics. This problem makes it difficult to

translate this algorithms from simulation to reality. One so-
lution for that is to integrate a 3D reconstruction using deep
learning that has translate the focus to a data-driven paradigm
[1, 14]. Deep networks are trained using large-size datasets,
either through manual labeling [11] or self exploration [14].
However, deep learning for grasping often suffers from limited
generalization within the training domains.

GIGA [12] has combined the synergies between affordance
of generalization and geometry, leading to a high accuracy on
grasping on clutter and uncluttered set of objects in compari-
son with other state-of-the-art algorithms. One limitation asso-
ciated with two finger grippers and optimal point of gripping
is based on the lack of fine tuning capability while grasping
that is given by the grasping pattern of the human thumbs
and digit. The human grasp task can be classified into power,
intermediate and precision grasping [7]. For power patterns
there is a rigid relation between the object and the hand, and
for precision handling the hand is able to perform intrinsic
movements on the object. Taxonomy and biomechanics studies
on human grasp types had determine that there is a vertical
displacement of the thumb in the plane of the hand palm (this
is related with power grips), and for precision grasping there
is a side or horizontal displacement of the thumb in the plane
of the hand palm [7].

GIGA applies a structured implicit neural representation for
6-DoF grasp detection. This method extracts structured grids
from Truncated Signed Distance Function (TSDF) voxel grid
fused from the input depth image. A local feature can be
computed from the feature grids given a query 3D coordi-
nate. This local feature is used by the implicit functions for
estimating the grasp affordance (in the form of grasp quality,
grasp orientation, and gripper width of a parallel jaw) and the
3D geometry (in the form of binary occupancy) at the query
location. For this article, we use the grasping quality that was
predicted during the training data of GIGA and use that score
to determine the type of grasp pattern that we the gripper
will adapt. If the grasping quality is between 0.5-1 a power
pattern will be used, if it below 0.5 a precise pattern will be
used to increase the success rate of cluttering and decluttering,
because precise grasp is used to fine tune the grasping quality
for objects that have more complex shapes.



II. RELATED WORK
A. Learning grasp detection

Pioneer studies on grasping have developed analytical meth-
ods based on the object models [6, 25].Grasp planning is
intended to find a gripper configuration that maximizes a
success (quality) metric [22]. In recent years, deep learning
methods have gained increased attention for the grasping
problem [? 26]. Dex-Net [22, 23] introduced a two-stage
pipeline for top-down antipodal grasping. It first samples
candidates 4-DoF grasps. The grasp quality of each grasp
candidate is then assessed by a convolutional neural network.
GPD [10] and PointPGD [21] tackled 6-DoF grasp detection
in clutter with a 2 stage pipeline: VGN [2] predicts 6-DoF
grasp in clutter with a one-stage from input depth-images.
In most recent works, deep networks are trained with only
grasp supervision. Furthermore, another line of works have
focused on estimating the affordance of an object and then
detect grasps based on estimated affordance [30, 19]. GIGA
is trained through a structured neural representation jointly
with self-supervised geometry and grasp supervisions [12].
Our model is an upgrade of GIGA that is trained following the
same pipeline than GIGA but the we add another feature in
the self-supervised portion that is biomechanical grasp patterns
based on the existing grasp training that GIGA uses.

B. Geometry-aware grasping and 3D reconstruction

The strong connection between grasp detection and geom-
etry reasoning has inspired a line of work on geometry-aware
grasping. DGGN regularizes grasps through 3D geometry
reconstructions by predicting a voxel occupancy grid from
partial observations and evaluates grasp quality from feature of
the reconstructed grid [33]. Furthermore, PointSDF learns 3D
reconstruction via implicit functions and shares the learned
geometry features with the grasp evaluation network [32].
On the contrary, GIGA improves grasp detection and focuses
more on the 3D reconstruction of graspable regions via joint
training of both tasks [12]. BioGIGA takes advantages of the
already 3D reconstructed of graspable regions and determines
the pattern of grasp depending on the grasp quality index.

C. Biomechanics of human grasping patterns

The complexity and variety of uses of the human hand
makes the categorization and classification of hand function
challenging. The hand has 15 joints that results in more
than 20 DoFs [13]. Consequently, directly modeling hand
shapes is difficult and involves specifying a large number
of parameters [7]. The ”GRASP Taxonomy” project was
funded by the European Union extracted 33 different grasp
types according to their taxonomy. The taxonomy provides
a common terminology to define human hand configurations
and is important in many domains such as human–computer
interaction in which an understanding of the human is on of the
basis for a proper interface [7]. Previous works have classified
each grasp based on the need the precision or power to be
properly executed [27]. This idea has been further studied and
a distinction between ”power grip” and ”precision handling”

has been introduced [20]. In the power grip, there is a rigid
relation between the object and the hand, which means that all
movements of the object have to be evoked by the arm. For
the precision handling, the hand is able to perform intrinsic
movements on the object without having to move the arm [7].
A third category, the intermediate grasp combines elements
of power and precision grasps that are present roughly in
the same proportion [15]. For the scope of this paper just
the power and precision grasps will be considered because
of the nature of the cluttering and decluttering task. Figure 1
taken from [7] shows the three main human grasping patterns
(including the intermediate grasp) and how the fingers are
positioned for different kind of objects and grasp patterns.

Fig. 1. Type of principal human grasp patterns with palm and fingers
positioning for each pattern. [7]

Anatomically the power grasp is produced as a basic defini-
tion between hand surfaces along a direction generally parallel
to the palm. This is associated with a vertical movement of
the thumb with respect to the digits to produce higher power.
Several robotic hand prosthesis have achieved this type of
grasp by first placing the digits and having a delay on the
move of the thumb [5], other approaches have approach that
by providing higher force in the thumb while grasping the
object [28] by using haptic sensors in the hand palm. For our
design an increase and the thumb grasping force normal to the
object point of contact and a delay on the thumb placement
will be introduced by decreasing the velocity of the vertical
movement of the thumb (one finger of the gripper) and its
stiffness. Figure 2 taken from [7] shows our approach to mimic
these two human grasp patterns.

Fig. 2. Our approach using the BioGIGA gripper design based on human
physiological behavior. a) Shows the precision grasp pattern in which there
is an horizontal translation of the thumb gripper finger. b) Power grasp
configuration in which the thumb is aligned with the index finger.

Furthermore, the human precision grasp is produced be-



tween hand surfaces along a direction transverse to the palm.
There is an horizontal and vertical translation of the hand palm
so as to place the thumb in between the index and middle
fingers on a transversal plan. This type has been introduced
on robotic hand prosthesis though a vertical and horizontal
displacement of the thumb [28, 5]. Our design follows the
same approach.

D. Implicit neural representations

Recent works have used the isosurface of an implicit func-
tion to represent the surface of a shape [4, 24]. By parametriz-
ing these implicit functions with deep networks, they are capa-
ble of representing complex shapes smoothly and continuously
in high resolution. The most common architecture for deep
implicit functions is multi-layer perceptions (MLP), which
encode the geometry information of the whole environment
into the model parameters of the MLP [12]. However, they
have difficulty in preserving the fine-grained geometric details
of local regions. To solve this problem, hybrid representations
have been introduced to combine feature grid structures and
neural representations [29]. GIGA uses this hybrid approach
for geometry reasoning in local objects parts [12]. Our model
uses this same approach but redefines the output of this
multilayer approach and classifies it into they type of grasp
according to the likelyhood of achieving a successful grasp
(grasp quality index).

III. METHODS

We introduce now BioGIGA, a learning algorithm inspired
on GIGA [12] that exploits the synergy between affordance
and geometry and 6-DoF grasp detection based on human
physiological grasping patterns. We learn grasp affordance
prediction and 3D occupancy prediction jointly with shared
feature grids and a grasping pattern detection based on the
grasp quality index that is one the outputs of the affordance
prediction and a unified implicit neural representation. The
grasp quality is defined as a scalar value between 0-1 that
estimates the probability of grasp success. We learn to predict
the grasp with binary success labels of executing the grasp trial
in simulation with the training dataset. Figure 3 illustrates the
overall model architecture.

A. Structure feature grids

To jointly learn the grasp affordance and 3D reconstruction,
we need to extract a shared feature from the TSDF input.
Following the same approach of GIGA, we adopt the encoder
architecture from ConvONets [29] and learn to extract struc-
ture features grids from partial observation.

Our encoder takes as input a TSDF voxel field processes
it with a 3D CNN layer to obtain a feature embedding for
every voxel. Given these features, we construct planar feature
representations by performing an orthographic projection onto
a canonical plane for each input voxel. The canonical plane is
discretized into pixel cells. Then we aggregate the features of
voxels projected onto the same pixel cell using average pool-
ing, which gives us a feature plane. The projection operation

greatly reduces the computation cost while keeping the spatial
distribution of feature points. We apply this feature projection
and aggregation process to all three canonical frames. We
therefore process each of these feature planes with a 2D U-
Net which is composed of a series of downsampling and
up-sampling convolutions with skip connections. The U-Net
integrates both local and global information and acts as a
feature inpainting network. The output feature grids denoted
as c, are shared for affordance and geometry learning. This is
exactly how GIGA architecture follows [12].

B. Implicit Neural Representations

1) Affordance Implicit Function: The affordance implicit
function is represented by the grasp affordance field of grasp
parameters (orientation and gripper width) and grasp quality.
They map the grasp center t to grasp parameters of orientation
and width (r and w) and the grasp quality metric q. These im-
plicit neural representations enable learning directly from data
with continuous grasp centers. In contrast, VGN has to snap
grasp centers to the nearest voxel as it uses an explicit voxel-
based grasp field. The snapping operation leads to information
loss while our model does not. Furthermore, a threshold of
0.5 in the grasp quality metric was determined using GIGA
training dataset on simulation for piles and clutters.

2) Geometry implicit function: Our geometry implicit func-
tion maps from an arbitrary query point inside the bounded
volume to the occupancy probability at the point. Occupancy
for purposes of this paper is defined as a binary value 0,1
indicating whether this point is occupied by any of the objects
in the scene. This geometry implicit function is exactly defined
as GIGA algorithm.

3) Grasp detection: GIGA takes as input a TSDF voxel
grid, a grasp center, and multiple occupancy query points and
predicts grasp parameters corresponding to the grasp center
and occupancy probabilities at the query points. Given the
trained GIGA model, we use a sampling procedure to select
the final grasp pose. Grasp affordance is implicitly defined
by the learned neural networks, so we need to query it from
the learned implicit functions. To cover all possible graspable
regions, we discretize the volume of the workspace into voxel
grids and use the position of all the voxel cells as grasp
centers. Then we query the grasp quality and grasp parameters
corresponding to these grasp centers in parallel. Next, we mask
out impractical grasps and apply nonmaxima suppression as
done in VGN [2]. Finally, we select a grasp with the highest
quality if the quality is beyond a threshold. If no grasp has the
quality above the threshold, we do not make grasp predictions
and give up the current scene. This works exactly as GIGA
[12].

In the test dataset BioGIGA predicted a range of 0.5 and
0.75 that correspond to a precission pattern in order to have
more fined-tuned grasp (similar to human biomechanics) and
from 0.75 to 1 a power grasp pattern was predicted so as to
have increase the accuracy of a successful grasp. Furthermore,
the BioGIGA model was trained again using the same training
dataset of GIGA for piles and clutters but using the new
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Fig. 3. Model architecture of BIOGiga: This architecture is very similar to GIGA [12] but and additional parameter is added in the quality index that is the
grasp pattern. Therefore, the affordance implicit functions predict grasp parameters and grasp pattern from the local feature at the grasp center. The geometry
implicit function predicts occupancy probability from the local feature at the query point.

gripper configuration. That produced modified the ranges for
the grasp quality index but the same threshold ranges were
applied for selecting the type of grasping pattern. Figure ??
shows BioGIGA gripper design. For a precision grip the thumb
gripper finger moves to the inside of the front of the palm and
aligns in between the index and middle finger. For a power
grasp configuration the thumb is aligned with the index finger
but has a small time delay of 0.1-0.3 s and an increase in the
gripper force that is introduced by modifying the velocity and
stiffness of the thumb gripper.

Fig. 4. BioGIGA gripper design. For a precision grip the thumb gripper
finger moves to the inside of the front of the palm and aligns in between the
index and middle finger. For a power grasp configuration the thumb is aligned
with the index finger but has a small time delay of 0.1-0.3 s and an increase
in the gripper force that is introduced by modifying the velocity and stiffness
of the thumb gripper.

IV. EXPERIMENTS

A. Experimental setup

Our model is trained in a self-supervised manner with
ground-truth grasp labels collected from physical trials in sim-
ulation and occupancy data obtained from the object meshes.
The use of TSDF enables zero-shot transfer of our model from
simulation to a real Panda arm from Franka Emika. This is
the exact similar environment as GIGA [12].

1) Simulation environment: Our simulated environment is
built on PyBullet. We use a free gripper to sample grasps in
a 30x30x30

cm3

tabletop workspace. For a fair comparison, we use the same
object assets as VGN, including 303 training and 40 test
objects from different sources [16, 17, 3, 31]. The simulation
grasp evaluations are all done with the test objects, which
are excluded from training. We collect grasp data in a self-
supervised fashion in two type of simulated scenes, pile
and packed as in VGN. In the pile scenario, objects are
randomly dropped to a box of the same size as the workspace.
Removing the box leaves a cluttered pile of objects. In the
packed scenario, a subset of taller objects is placed at random
locations on the table at their canonical pose.

Once the scene is created a sample grasp centers and grasp
orientations near the surface of the objects and execute these
grasp samples in simulation. We store grasp parameters and
the corresponding outcomes of the grasp trials and balance the
dataset by discarding redundant negative samples. We collect
the occupancy training data in the same scenes where grasp
trials are performed. Upon the creation of a simulation scene,



we query the binary occupancy of a large number of points
uniformly distributed in the cubic workspace as the training
data. This is the exact recreated simulation environment than
GIGA [12].

2) Grasp execution: We select top grasps to execute by
querying grasp parameters from the learned implicit functions
with a set of grasp centers. For a fair comparison with VGN,
our BioGIGA model samples 40x40x40 uniformly distributed
grasp centers in the workspace and query the grasp parameters.
However, our implicit representations are continuous, so we
can query grasp samples in arbitrary resolutions. In BioGIGA
(HR), we query at a higher resolution of 60x60x60. We use a
set of clutter removal scenarios to evaluate BioGIGA and other
baselines and the corresponfind GIGA, GIGA (HR) baselines.
Each round, a pile or packed scene with 5 objects is generated.
We take a depth image from the same viewpoint as training.
The grasp detection algorithm generates a grasp proposal given
the input TSDF. Until this point our algorithm is exactly
similar to GIGA. [12]. Furthermore, given the orientation and
grip width that result from this prediction a grasp pattern is
selected according to the grasp quality metric. From a value
of

q

from 0.5 to 0.75, a precision grasp is configured and from
0.75 to 1 a grasp power configuration is used. We execute the
grasp and remove the grasped object from the workspace. If
all objects are cleared, two consecutive failures happen, or no
grasp is detected, we terminate the current scene. Otherwise,
we collect the new observation and predict the next grasp.
In our experiments, grasp proposals with a predicted grasp
quality below 0.5 are discarded.

B. baselines

The baselines used for comparing our algorithm’s perfor-
mance where SHAF in which we used the highest point
heuristic [9] by classic work of grasping in clutter, rather
than the learned grasp quality, for grasp selection. In addition,
GDP [10] (Grasp Pose Detection) that is a two stage 6-
DoF grasp detection algorithm that generates a large set of
grasp candidates and classifies each of them was set as the
other baseline. VGN (Volumetric Grasping Network) a single-
stage 6-DoF grasp detection algorithm that generates a large
number of grasp parameters in parallel given input TSDF
volume was also used. Moreover, GIGA-Aff [12] An ablated
version of our method with only affordance implicit function
branch. The network is trained with only grasp supervision
but no reconstruction was also used. Lastly, both GIGA and
GIGA(HD) were used as baseline comparison of BioGIGA.

Performance is measured using the following metrics aver-
aged over 100 simulation rounds: 1) Grasp success rate (GSR),
the ratio of success grasp executions; and 2) Declutter rate
(DR), the average ratio of objects removed. The original VGN
uses multi-view inputs, we re-train the VGN model on the
same single-view data we used for training BioGIGA for fair
comparisons. Those were the same criterion used by GIGA

[12].

C. Grasp detection results

We report grasp success rate and declutter rate for different
scenarios in Figure 5. It can be observed that BioGIGA and
BioGIGA (HD) outperforms the baselines algorithm in almost
all the categories, metrics and scenarios. The implicit neural
representations learn to fit grasp affordance field withcon-
tinuous functions. It allows us to query grasp parameters
at a higher resolution as done in GIGA (HR) allow this
algorithm to outperform the state-of-the-art algorithms by
10%. BioGIGA (HR) gives the highest performance in all
cases and overperform GIGA (HR) by 5%.

This results were achieved using the same GIGA training
dataset but using the new gripper configuration in the training
dataset and in real simulation. Figure 6 shows the new gripper
in the simulation environment performing a power grasping
task because the quality index for this object was of 0.82.
Initially, BioGIGA was training using the same gripper design
as GIGA and then applying the new gripper configuration on
the simulation environment. Here the grasping performance
was around 3% higher than GIGA. Further analysis, showed
that setting a grasp quality index threshold for no grasping
decision of 0.45 and using BioGIGA configuration for the
training fataset showed similar behavior in grasping metrics
than GIGA.

Fig. 6. BioGIGA new gripper configuration for a grasping task using a power
pattern in the simulation environment

V. CONCLUSIONS

The main contributions of this paper were: 1. Provide an ef-
fective and low-cost implementation for robotic gripper design
that mimics some human grasping patterns that outperforms
by 5% state-of-the-art grasping algorithms. 2. This algorithm
applies the same concept that inspired GIGA related with the
sinergies between affordance and geometry but outperforms
GIGA in a 5% average and 15 % to baseline state-of-the-art
algorithms. The main limitations of BioGIGA are based on
that this method has not been proved in real world scenarios
and that might have some challenging aspects relating to the
gripper design, although the use of TSDF provides a smooth
transition to real applications, and this new design strictly
followed TSDF guidelines. Furthermore, our algorithm uses
all the advantages and goals already achieved by GIGA that



Fig. 5. Quantitative results of clutter removal. We report mean and standard deviation of grasp success rates (GSR) and declutter rates (DR). HR denotes
high resolution.

detects an optimal grasp through geometry and affordance
functions. Lastly, there is a restriction related with the size
of the gripper fingers that might be an issue for very small
pick up object cluttering.
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