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Abstract—Variational grasp detection seeks to generate various
grasps through a generative model. In this work, the robots need
to analyze the objects in a 3D scene (either in pile scenario or
packed scenario as shown in Figure 1), and then learn grasps that
try to remove all objects in the scene. In the context of the original
GIGA [9], which harnesses the synergies between affordance and
geometry, we propose this work to extend the regression model to
a generative model. Our model takes advantage of the generative
model to predict the full distribution of viable grasp parameters
to generate various grasps for one grasp center through an
encoder-latent space-decoder network structure. Same as GIGA,
we train the model on self-supervised grasps trials data in
simulation, generating one ground-truth grasp as the label for
each grasp center. The evaluation is performed on simulated
grasping tasks. With objects laid on a 3D scene, the robots need to
remove these objects in clutter by grasping one object every trial.
Variational GIGA is evaluated by both the variability and the
quality of the generated grasps. We only performed experiments
in simulation. The experiments demonstrate the great variability
generated through our model and the good quality of predicted
grasps (which is at the same level as the original GIGA). Besides,
through analyzing the results, we discovered that there is a trade-
off between the diversity and quality of the trained model.

I. INTRODUCTION

Generating variational robust grasps is very important. One
reason is it is a very prevalent task using grippers to physically
interact with the environment to grasp objects. Thus, improv-
ing the diversity and quality of grasps is critical. Another
reason is with variational grasps, the model is able to increase
its exploration ability, investigating more possible grasping
poses.

This task requires the robots to reason about the 3D scene
and infer various reconstructed grasps’ parameters from the 3D
scene. We formalize the problem in the context of removing
objects in clutter through 6-DoF grasp detection with a single
side-view camera. The main object is generating a reasonable
amount of reconstructed grasps for each grasp center on the
scene of a clutter of objects so that the grippers can grasp and
remove one object at a time from the scene to declutter all.

Inspired by the idea of implicit geometry and affordance
representations and variational grasp generation, we investi-
gate if a generative model will improve grasping performance.
our initial thought is if there is a good grasp reconstructed for
a certain grasp center, there will be more good grasps for that
grasp center. In this case, generating more grasp per grasp

Fig. 1: We perform the task of clutter removal. These are
examples of visualization in simulation of two scenarios. In
the pile scenario (left), objects are dropped with random
positions and poses. In the packed scenario (right), objects
are in the canonical 3D poses, placed upright and ordered like
pieces of stuff being placed by individuals in daily life. Our
model will reason about the 3D scene like these and generate
reconstructed grasps to remove one object at a time until all
the objects in the 3D scene are removed.

center may maximize the benefits of implicit geometry and
affordance representations.

The original GIGA [9] utilizes the synergy between 3D
reconstruction and grasp affordance for 6-DoF grasp detection
in a clutter removal task. However, it only predicts one ground
truth grasp pose for each grasp center. We are wondering
if predicting the full distribution of grasp parameters would
improve grasp detection. Therefore, we introduced our work,
Variational GIGA (Variational Grasp Detection via Implicit
Geometry and Affordance). It extends the grasp affordance
part to learn to predict the full distribution of viable grasp
parameters in a generative model rather than a single ground
truth grasp pose for each grasp center. It is approached through
a network structure similar to cVAE. Encoder predicts the
mean and standard deviation of the distribution, which then are
used to generate the latent features. The decoder predicts the
grasp parameters from the latent features. Through modifying
the network structure, we are able to achieve a generative
model with the prediction of the full distribution of viable
grasp parameters.

There are two main challenges during the whole process.
First, the primary challenge is to develop a model that is able



to generate multiple grasps based on the grasp center and local
features. We need to figure out a way to modify the regression
model to a generative one. We applied a network structure
similar to cVAE to turn it into a generative model, predict-
ing the distribution of grasp parameters rather than directly
predicting grasp parameters to solve this issue. Second, after
changing to a generative model, more hyperparameters (e.g.
the weight of KL-Divergence loss) are added. It may require
some fine-tuning. We tune the model using the small dataset
and the large dataset to solve it, which will be explained in
detail later.

We did experiments in simulation. Either in the pile or
packed scenario, objects are placed in the 3D scene and our
model generates grasp parameters to perform clutter removal
tasks. Objects are removed one at a time by the gripper
(based on the generated grasp parameters). The quality of
the generated grasps is on the same level compared to the
original GIGA. First, The validation accuracy is on the same
level compared to GIGA. Training with the large dataset,
in pile scenario Variational GIGA reached 88.3% validation
accuracy while in packed scenario Variational GIGA reached
90.07% validation accuracy. Second, the Grasp Success Rate
and Declutter Rate results are at the same level as the original
GIGA. Evaluating the model trained with the large dataset,
in pile scenario it reached 63.22% Grasp Success Rate and
50.57% Declutter Rate in the pile scenario, and 77.6% Grasp
Success Rate and 77.2% Declutter Rate in the packed scenario.
Besides evaluating the quality of grasps, our model has more
variability and diversity compared to the original GIGA as
shown in Figure 5. It not only is able to generate more
grasps per grasp center, but also may generate more grasps
on different grasp centers overall as it explores more.

We summarize the main contributions of our work as
follows:

• We introduce a generative model for affordance predic-
tion that effectively predicts the distribution of grasp
parameters.

• We provide a detailed analysis of experiments results.
Comparing our model’s results to the results from the
original GIGA can clearly show the advantages and
disadvantages of our model. We also derive the trade-
off between diversity and quality for variational grasp
detection.

II. RELATED WORK

Our work is primarily based on GIGA [9]. As the next
generation of GIGA, most of the architecture of the network
and the datasets are the same as GIGA.

A. Implicit Geometry and Affordance

Implicit representations have been improved and used a
lot in recent years ([4], [12], [8]). GIGA [9], which applies
implicit representations of geometry and affordance, takes the
benefits of differentiable and continuous implicit functions.

Since our model only wants to predict more grasps per grasp
center, the implicit representations are still effective in our

case. Thus, our model maintains similar implicit representa-
tions as the original GIGA to take the benefits from implicit
functions. While keeping the geometry implicit function the
same as the original GIGA, the affordance implicit function is
modified to a structure similar to cVAE since we would like
to predict the full distribution of grasp parameters. The affor-
dance and geometry are still jointly learned simultaneously to
harness the synergies between them.

B. Variational Grasp Detection

There are pioneer works of the variational grasp generation
([7], [11]).

The theory of the evidence lower-bound objective (ELBO)
[7] is the basis theoretically showing the validity of variational
auto-encoder (VAE), which maximizes ELBO when training.
As one of the primary methods to get generative models, it
has been applied to perform several tasks like handwritten
digits generation, sentence prediction, sentence interpolation
and so on. A variant of VAE is the conditional variational auto-
encoder (cVAE), which generates a conditional distribution.

As a state-of-the-art method for getting generative models,
we applied cVAE to affordance prediction, conditioning on
each location which is based on the corresponding 3D local
features. Our model’s network structure of affordance predic-
tion is very similar to the variational grasp sampler [11]. Both
works have a latent space satisfying the Gaussian distribution,
which is chosen beforehand. The detailed implementations
are a little bit different. The backbone of our model is the
convolutional occupancy network [13] while the related work
[11] uses PointNet++ [14]. Our encoder takes in the grasp
center and its corresponding local features while that related
work [11] takes in the point cloud and a grasp. Our decoder
generates the qualities and rotations of the reconstructed grasps
while that related work [11] generates the grasp poses. Overall,
the high-level idea of variational grasp detection is very similar
to those related work while the low-level implementations
vary.

III. DATA

A. Datasets

We used the dataset from the GIGA [9] directly. And they
originally come from VGN [3]. It is not only because these
data are good enough for us to use, but also because using the
same data may provide a fair comparison between our model
(Variational GIGA) and the original GIGA.

The dataset is a synthetic grasping dataset generated with
physics simulation. The object sets can be found through this
link.

The ground-truth grasp labels are collected in simula-
tion. Grippers will generate physical trials during the self-
supervised data generation process, so that the ground truth
quality and rotation labels are able to be collected. One
ground-truth grasp label is collected for each grasp center.
The occupancy labels are collected from object meshes. After
the self-supervised data generation process, there is a process
for data cleaning, data balancing, and noise adding to make

https://utexas.box.com/s/h3ferwjhuzy6ja8bzcm3nu9xq1wkn94s
https://utexas.box.com/s/h3ferwjhuzy6ja8bzcm3nu9xq1wkn94s


Fig. 2: The model architecture of Variational GIGA, which learns the affordance distribution rather than a single point regression.
Compared to the GIGA model architecture, we changed the affordance implicit functions into cVAE, the variational autoencoder.
The Encoder Network takes in the grasp center and the corresponding local features, and outputs the mean and standard deviation
of the probability density function of latent space. Along with a random variable sampled from Normal Distribution, we predict
the latent space. The Decoder Network takes in latent features and local features, and outputs the reconstructed grasps that
will be decomposed to grasp parameters. Another minor change is we removed width in the output since it is useless when
generating grasps.

sure these self-generated data are of good quality. These data
preprocessing and data generation processes are the same as
the original GIGA.

For training, we generate two datasets for each scenario.
The small dataset contains around 10,000 data points for each
scenario. The large dataset contains around 10M and 2M data
points for pile and packed scenarios respectively.

B. Simulation Environment

Our simulation environment is also the same as the original
GIGA since it is good to use and it is easy to do a fair compar-
ison when running experiments. The simulation environment
is built on Pybullet [5]. Same as the original GIGA, our model
uses a free gripper to sample grasps in a 30 × 30 × 30 cm3

tabletop workspace. There are two simulated scenes, pile and
packed as shown in Figure 1. When running experiments, we
use 5 random seeds with 50 simulation runs (simulated grasps)
each for evaluation.

IV. PROBLEM FORMULATION

We consider the problem of 6-DoF grasp detection for
unknown rigid objects in clutter from a single-view depth
image. Currently, we are curious if extending GIGA to learn
the affordance distribution rather than a single point regression
will improve grasp learning.

A. Assumptions

The robot arm is a parallel-jaw gripper. The workspace is
initialized with several unknown rigid objects. The model takes
in a Truncated Signed Distance Function (TSDF) generated
by a single-view camera. The model outputs the 6-DoF grasp
pose predictions and grasp qualities. [9] Also, we assume the
probability density function of the latent space is in Gaussian
Distribution.

B. Notations

Grasps We define a 6-DoF grasp g as the grasp center
position t ∈ R3, and the orientation r ∈ SO(3) of the gripper.
[9] The opening width w ∈ R between the fingers is removed
from the original GIGA since it is useless in grasping.

Grasp Quality A scalar grasp quality q ∈ [0, 1] estimates
the probability of grasp success. The grasp quality q is one-
dimensional. We learn to predict the grasp quality of a grasp
with binary success labels of executing the grasp trial in
simulation. [9]

Occupancy For an arbitrary point p ∈ R3, the occupancy
b ∈ {0, 1} is a binary value indicating whether this point is
occupied by any of the objects in the scene. [9]

C. Objectives

Goal The primary goal for Variational GIGA is to detect 6-
DoF grasps through the synergies between 3D reconstruction



Fig. 3: We log the validation accuracy (average validation
quality of generated grasps) using a line chart. The x-
axis is the number of epochs while the y-axis is the
accuracy generated in the pile scenario. The small dataset
has around 10,000 data points for training. The large
dataset has around 10M data points for training. GIGA-
Pile-Small is the validation accuracy generated by training
the original GIGA with a small dataset in the pile scenario.
GIGA-Pile-Large is the validation accuracy generated by
training the original GIGA with a large dataset in the pile
scenario. Variational GIGA-Pile-Small is the validation
accuracy generated by training our current model with a
small dataset in the pile scenario. Variational GIGA-Pile-
Large is the validation accuracy generated by training our
current model with a large dataset in the pile scenario.

Fig. 4: Same as Figure 3, we log the validation accuracy
(average validation quality of generated grasps) using a line
chart. The y-axis is the accuracy generated in the packed
scenario.
The small dataset has around 10,000 data points for
training. The large dataset has around 2M data points for
training. There are fewer data points in the packed scenario
than the pile scenario, we originally trained with 20 epochs
rather than 10, but our current model (Variational GIGA)
converges at around 10 epochs, so for a fair comparison,
we trained for 10 epochs for all. The labels in this figure
have the same meaning as Figure 3 except everything is
in the packed scenario.

and variational grasp generation. Given the input observation
V, our goal is to learn three functions:

fe : t → µ, σ,

fd : z → q, r,

fg : p → b.

(1)

The first function fe maps from a grasp center point t ∈ R3

and its corresponding local features ϕt, ϕp to the mean µ
and standard deviation σ of the probability density function
of latent space. Once fe is trained, we can obtain the best
latent space probability distribution.

The second function fd maps from a latent feature z to
rotation r and grasp quality q of the best grasp. Once fd is
trained, we can select which grasp to execute based on the
grasp quality at grasp centers.

We use fe and fd combined to learn the posterior distri-
bution P(G* | V), where G* is the reconstructed grasp space
and V is the input observation. Each grasp g ∈ G* can be
decomposed to r and q, which are rotation and quality of the
grasp respectively. While predicting µ and σ through fe, we
generate a random variable ϵ by sampling from N(0, 1), the
Normal Distribution. The latent feature is calculated by z = µ
+ σ · ϵ, which is input into fd to generate the reconstructed
grasp. [1]

The third function fg maps any point in the workspace to the
estimated occupancy value at that point. We can extract a 3D

mesh from the learned occupancy function with the Marching
Cube algorithm [10].

Expected Results And Evaluation We will take the
experiment results of GIGA as the baseline to compare.
We will evaluate based on the validation set’s grasp quality
during training, and grasp success rates (GSR) and declutter
rates (DR) during testing. We will also visualize the grasp
affordance landscape and predicted grasps to evaluate. We
expect the new method with a full distribution of grasp
pose parameters will improve grasp detection exploration,
increasing the variability or diversity of grasps generated. It
is expected that variational GIGA will generate more various
grasps compared to GIGA.

V. METHOD

We now present Variational GIGA, a model that leverages
synergies between 3D reconstruction and variational affor-
dance for 6-DoF grasp detection from partial observation.

Besides cVAE, there are a lot of other approaches to reach
the goal of a generative model like the Gaussian Mixture
Model, Probabilistic Context-free Grammar, and so on. Some
do not fit into our grasp detection case, while others may
not meet our need to get a generative model conditioning on
each location of the object based on its corresponding local
features. And the intuitive approach is using cVAE, which
directly solves the problem and reaches the goal.



The grasp affordance learns the full distribution of viable
grasp parameters. Figure 2 illustrates the overall model archi-
tecture. We no longer have a single network, the affordance
implicit functions to predict affordance parameters through a
single point regression. Rather, we use a structure similar to
cVAE [2], which includes an encoder network and a decoder
network, to predict grasp parameters. By applying the idea of
variational autoencoder, we are able to get a generative model,
which is exactly what we want for generating multiple grasps
per grasp center. In this case, our cVAE network structure can
successfully approach our goal. The details of the modified
parts are discussed as follows.

A. Encoder

Our encoder takes in the grasp center t and local features
ϕt, ϕp as inputs and processes them to generate the mean µ
and standard deviation σ of the distribution of the latent space.
We will tune the dimension of latent size with 128 and 64.

B. Latent Space

We use reparameterization tricks to generate the latent
feature. Basically, z = µ + σ · ϵ, where µ and σ are outputs of
the Encoder, ϵ is sampled from normal distribution, and z is
the input of the Decoder. Since ϵ ∼ N(0, 1), the latent space
satisfies the Gaussian distribution.

C. Decoder

Our decoder takes in the local features ϕt, ϕp and latent
features z as inputs, and processes them to generate the grasp
quality q and grasp orientation r. The output dimension of
grasp quality q is 1 while output dimension of grasp orientation
r is 3.

D. Loss Function

According to the variational lower-bound (ELBO) theory
[7], we need to add the Kullback-Leibler divergence loss (KL-
divergence loss) into the original loss function. The calculation
of KL-divergence loss is based on the VAE tutorial [6]. We
will tune the weight of KL-divergence loss in the loss function
with 1, 0.1 and 0.01.

The overall loss function is:

L =
1

n
·

n∑
0

L(q̂, q)+
1

n
·

n∑
0

L(r̂, r)+L(b̂, b)+ω·KLDivLoss

Here L represents the loss function, n represents the number
of grasps generated per grasp center, q̂ represents the predicted
grasp quality, q represents the ground-truth grasp quality,
r̂ represents the predicted grasp rotation, r represents the
ground-truth grasp rotation, b̂ represents the predicted occu-
pancy, b represents the ground-truth occupancy, ω represents
the weight of KL-Divergence loss (which is a hyperparameter
to tune), and KLDivLoss represents the KL-Divergence Loss
calculated through the torch.nn.functional.kl div() Pytorch in-
ternal function.

For each grasp center, n grasps are generated. We average
the affordance loss of those n grasps of the same grasp center

so that the affordance loss and the geometry loss are on the
same scale.

VI. EXPERIMENTS AND RESULTS.

We study the efficacy of variational grasp generation
through experiments. Through the experiments, we are try-
ing to investigate into one question: we are wondering if
variational GIGA is able to improve grasping, evaluating
based on diversity/variation and accuracy/quality of the grasps
generated. We use the results from the original GIGA [9] as
the baseline.

A. Training Results

We first trained models with the small dataset and the large
dataset. We trained 10 epochs for all. Considering the large
dataset of the packed scenario has only 2M data, we originally
trained the large dataset in the packed scenario with 20 epochs
to compensate for that. However, our current model converges
at 10 epochs so we end up training all with 10 epochs. We set
the latent size to be 64, the weight of KL-Divergence loss to
be 0.1, and the number of grasps generated per grasp center to
be 10 in our model. All other hyperparameters (e.g. learning
rate) are the same as the original GIGA.

The validation accuracies (validation quality of generated
grasps) are shown in Figure 3 and 4 for pile and packed
scenarios respectively. Training with the large dataset, the
validation accuracy of our model achieved 88.83% in the pile
scenario and 90.07% in the packed scenario. According to
Figure 3 and 4, we can find that when training with the large
dataset, GIGA and Variational GIGA has similar performance
according to the validation accuracy. The validation accuracy
curve varies for the small dataset. Considering the size of the
small dataset, the variance may be large. Thus we may only
conclude that overall the validation accuracies generated from
our model are approximately at the same level compared to
the original GIGA.

B. Grasp Detection Results

We evaluate our model on two perspectives: 1) diversity (or
variation) of the generated grasps; 2) quality (or accuracy) of
the generated grasps.

1) Grasp Diversity Analysis:
As our model predicts variational grasps, evaluating the

diversity of grasps generated is essential. It is not only because
it may help to show the validity of our implementations, but
also because it illustrates the exploration of grasps predicted.

We take the original GIGA as the baseline [9]. We tried
to evaluate the diversity quantitatively. However, since the
original GIGA only has 1 predicted grasp per grasp center,
our model has better diversity on each grasp center for sure.
The original GIGA may not provide a quantitative baseline
for us to compare. Therefore, we tried to evaluate the diver-
sity qualitatively, mainly through visualization. Because we
removed width entirely in our model since it is useless, it
is still needed in the visualization to show the width of the
gripper. In visualization, we use the ground-truth width of



Method Pile Packed
GSR (%) DR (%) GSR (%) DR (%)

Small Datatset GIGA 16.75 ± 4.48 8.91 ± 2.88 24.54 ± 9.03 20.51 ± 9.30
Variational GIGA 16.28 ± 1.46 8.92 ± 1.20 25.56 ± 5.41 21.05 ± 5.41

Large Dataset GIGA 68.78 ± 4.23 49.73 ± 4.08 79.44 ± 2.35 78.94 ± 3.00
Variational GIGA 63.22 ± 1.57 50.57 ± 3.02 77.60 ± 6.54 77.20 ± 6.32

TABLE I: Quantitative Experiments Results. We tested both the original GIGA and our model (Variational GIGA) on clutter
removal tasks through simulated grasps. The mean and standard deviation of GSR (Grasp Success Rate) and DR (Declutter
Rate) of each scenario are shown.

Fig. 5: Grasp visualization for pile (left) and packed (right) scenarios. The blue circles indicate the objects of interest.

simulated grasps (which is the width of the gripper when it
contacts the objects).

The visualization of generated grasps is shown in Figure 5.
For each scenario, the first column illustrates the visualization
of the original GIGA training with the large dataset, the second
column illustrates the visualization of our model training
with the small dataset, and the third column illustrates the
visualization of our model training with the large dataset.
Because we generate simulated grasps with random seeds and
objects in the scene are not always removed at the grasp trial,
the visualization we generated on the same row does not have
the same set of objects in the 3D scene. However, it does not
affect the analysis of diversity in our case since we are able to

discern certain objects of interest to compare. The blue circle
points out the object of interest in the scene.

In the pile scenario of Figure 2, we show the visualization
of a bowling-pin-shaped object, an irregular-top cylindrical
object, a spherical object, and a trapezoidal-column-shaped
object from row 1 to row 4 respectively. The model trained
with the small dataset is able to generate a great number of
various grasps for a grasp center. The model trained with the
large dataset doesn’t generate a lot of grasps per grasp center,
but it may generate more grasps in different grasp centers
overall (e.g. the grasps generated on the bowling-pin-shaped
object). We believe that is because our model can explore
more grasp poses for a single grasp center and thus has a



higher probability to predict one with good grasp quality.

In the packed scenario of Figure 2, we show the visualiza-
tion of an irregular-top cylindrical object, a cuboidal object,
a cylindrical object, and a Rounded cuboidal object from row
1 to row 4 respectively. Same as the pile scenario, the model
trained with the small dataset can generate a great number
of various grasps for a grasp center. The model trained with
the large dataset is able to generate multiple grasps per grasp
center for the first three objects.

In conclusion, our model is able to generate more diverse
grasps both in the pile and packed scenarios compared to the
original GIGA.

2) Grasp Quality Analysis:

The quality of grasps generated by our model is also impor-
tant. We report the Grasp Success Rate (GSR) and Declutter
Rate (DR) in Table I. We trained the original GIGA with
the same dataset and the same hyperparameters. We evaluated
based on the same object set (pile/test and packed/test) on the
simulated grasp task. Using the same metric as the original
GIGA, we are able to conduct a fair comparison between our
model and the baseline. Our model achieved 63.22% GSR and
50.57% DR in the pile scenario, and 77.6% GSR and 77.2%
DR in the packed scenario. The numbers are slightly lower
than the original GIGA, but they are still on the same level
compared to GIGA. Thus, we can conclude Variational GIGA
is able to generate grasps of approximately the same level of
quality as the original GIGA.

3) Trade-off Between Diversity and Quality:

After obtaining and analyzing the results of our experiments,
we find there is a trade-off between diversity and quality in
our model.

The evidence for this trade-off is explained as follows. First,
we find that the model trained with the small dataset is of
higher diversity but worse quality, while the model trained
with the large dataset is of lower diversity but better quality.
Second, The model trained with the large dataset in the packed
scenario generates more diverse grasps compared to the model
trained with the large dataset in the pile scenario. Given the
fact that the large dataset of pile scenario has 10M data while
the large dataset of packed scenario has 2M data, the packed
model is expected to generate more diverse grasps than the
pile model.

In summary, Variational GIGA achieved the same level
of grasp quality and better grasp diversity compared to the
original GIGA. It is able to achieve the goal of learning
to predict the full distribution of viable grasp parameters
with generative modeling. The trade-off between diversity and
quality in Variational GIGA exists. Training with a larger
dataset approaches better quality while training with a smaller
dataset approaches better diversity. In applications, balancing
between the grasp quality and the grasp diversity may be
needed.

VII. CONCLUSION

We introduced Variational GIGA, which is able to perform
6 DoF grasp detection in clutter removal tasks. As the next
generation of GIGA [9], our model learns variational grasp de-
tection by generative modeling rather than generating a single
grasp per grasp center. We approached the generative model
through a network structure similar to cVAE. It is able to
predict the full distribution of viable grasp parameters for each
grasp center, which is the most important advantage of our
work. We did experiments in simulation. Through experiments,
we investigated the grasp diversity and quality of our model.
We conclude that Variational GIGA can achieve better grasp
diversity and the same level grasp quality compared to the
original GIGA. We also find that the trade-off between grasp
diversity and quality exists in our model, which is a possible
weakness and needs to be concerned in applications. Another
weakness of our work is we did not test our model on real
robots. However, all the results we obtained demonstrate that
overall Variational GIGA outperforms the original GIGA.

There are two possible future extensions of our work. First,
we plan to generate more ground-truth grasp poses for each
grasp center in the data generation process. Thus, it may
further improve the diversity of grasps. Second, we hope
to use more complex grippers. Currently we are using the
parallel-jaw gripper. We are considering if using more complex
grippers in Variational GIGA may improve grasp quality.
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