Subsection 1.2.4 The vector p-norms
ΒΆfit widthA vector norm is a measure of the magnitude of a vector. The Euclidean norm (length) is merely the best known such measure. There are others. A simple alternative is the 1-norm.Definition 1.2.4.1. Vector 1-norm.
The vector 1-norm, ββ β1:CmβR, is defined for xβCm by
Homework 1.2.4.1.
Prove that the vector 1-norm is a norm.
We show that the three conditions are met:
Let \(x, y \in \C^m \) and \(\alpha \in \mathbb C \) be arbitrarily chosen. Then
-
\(x \neq 0 \Rightarrow \| x \|_1 > 0 \) (\(\| \cdot \|_1 \) is positive definite):
Notice that \(x \neq 0 \) means that at least one of its components is nonzero. Let's assume that \(\chi_j \neq 0 \text{.}\) Then
\begin{equation*} \| x \|_1 = \vert \chi_0 \vert + \cdots + \vert \chi_{m-1} \vert \geq \vert \chi_j \vert > 0 . \end{equation*} -
\(\| \alpha x \|_1 = \vert \alpha \vert \| x \|_1 \) (\(\| \cdot \|_1 \) is homogeneous):
\begin{equation*} \begin{array}{l} \| \alpha x \|_1 ~~~=~~~~ \lt \mbox{ scaling~a~vector-scales-its-components; definition} \gt \\ \vert \alpha \chi_0 \vert + \cdots + \vert \alpha \chi_{m-1} \vert \\ ~~~=~~~~ \lt \mbox{ algebra} \gt \\ \vert \alpha \vert \vert \chi_0 \vert + \cdots + \vert \alpha \vert \vert \chi_{m-1} \vert \\ ~~~=~~~~ \lt \mbox{ algebra} \gt \\ \vert \alpha \vert ( \vert \chi_0 \vert + \cdots + \vert \chi_{m-1} \vert ) \\ ~~~=~~~~ \lt \mbox{ definition} \gt \\ \vert \alpha \vert \| x \|_1. \end{array} \end{equation*} -
\(\| x + y \|_1 \leq \| x \|_1 + \| y \|_1 \) (\(\| \cdot \|_1 \) obeys the triangle inequality):
\begin{equation*} \begin{array}{l} \| x + y \|_1 \\ ~~~=~~~~ \lt \mbox{ vector~addition;~definition~of~1-norm} \gt \\ \vert \chi_0 + \psi_0 \vert + \vert \chi_1 + \psi_1 \vert + \cdots + \vert \chi_{m-1} + \psi_{m-1} \vert \\ ~~~\leq~~~~ \lt \mbox{ algebra} \gt \\ \vert \chi_0 \vert + \vert \psi_0 \vert + \vert \chi_1 \vert + \vert \psi_1 \vert + \cdots + \vert \chi_{m-1} \vert + \vert \psi_{m-1} \vert \\ ~~~=~~~~ \lt \mbox{ commutivity} \gt \\ \vert \chi_0 \vert + \vert \chi_1 \vert + \cdots + \vert \chi_{m-1} \vert + \vert \psi_0 \vert + \vert \psi_1 \vert + \cdots + \vert \psi_{m-1} \vert \\ ~~~= ~~~~ \lt \mbox{ associativity;~definition} \gt \\ \| x \|_1 + \| y \|_1. \end{array} \end{equation*}
Definition 1.2.4.2. Vector β-norm.
The vector β-norm, ββ ββ:CmβR, is defined for xβCm by
Homework 1.2.4.2.
Prove that the vector \infty-norm is a norm.
We show that the three conditions are met:
Let \(x, y \in \C^m \) and \(\alpha \in \mathbb C \) be arbitrarily chosen. Then
-
\(x \neq 0 \Rightarrow \| x \|_\infty > 0 \) (\(\| \cdot \|_\infty \) is positive definite):
Notice that \(x \neq 0 \) means that at least one of its components is nonzero. Let's assume that \(\chi_j \neq 0 \text{.}\) Then
\begin{equation*} \| x \|_\infty = \max_{i=0}^{m-1} \vert \chi_i \vert \ge \vert \chi_j \vert > 0. \end{equation*} -
\(\| \alpha x \|_\infty = \vert \alpha \vert \| x \|_\infty \) (\(\| \cdot \|_\infty \) is homogeneous):
\begin{equation*} \begin{array}{lcl} \| \alpha x \|_\infty \amp =\amp \max_{i=0}^{m-1} \vert \alpha \chi_i \vert \\ \amp =\amp \max_{i=0}^{m-1} \vert \alpha \vert \vert \chi_i \vert \\ \amp =\amp \vert \alpha \vert \max_{i=0}^{m-1} \vert \chi_i \vert \\ \amp =\amp \vert \alpha \vert \| x \|_\infty. \end{array} \end{equation*} -
\(\| x + y \|_\infty \leq \| x \|_\infty + \| y \|_\infty \) (\(\| \cdot \|_\infty \) obeys the triangle inequality):
\begin{equation*} \begin{array}{lcl} \| x + y \|_\infty \amp =\amp \max_{i=0}^{m-1} \vert \chi_i + \psi_i \vert \\ \amp \leq\amp \max_{i=0}^{m-1} ( \vert \chi_i \vert + \vert \psi_i \vert ) \\ \amp \leq\amp \max_{i=0}^{m-1} \vert \chi_i \vert + \max_{i=0}^{m-1} \vert \psi_i \vert \\ \amp = \amp \| x \|_\infty + \| y \|_\infty. \end{array} \end{equation*}
Definition 1.2.4.3. Vector p-norm.
Given p \geq 1 \text{,} the vector p-norm \| \cdot \|_p : \C^m \rightarrow \mathbb R is defined for x \in \C^m by
Theorem 1.2.4.4.
The vector p-norm is a norm.
Theorem 1.2.4.5. HΓΆlder's inequality.
Let 1 \leq p,q \leq \infty with \frac{1}{p} + \frac{1}{q} = 1\text{.} If x, y \in \Cm then \vert x^H y \vert \leq \| x \|_p \| y \|_q \text{.}
Remark 1.2.4.6.
The vector 1-norm and 2-norm are obviously special cases of the vector p-norm. It can be easily shown that the vector \infty-norm is also related:
Ponder This 1.2.4.3.
Consider Homework 1.2.3.3. Try to elegantly formulate this question in the most general way you can think of. How do you prove the result?Ponder This 1.2.4.4.
Consider the vector norm \| \cdot \|: \Cm \rightarrow \mathbb R \text{,} the matrix A \in \mathbb C^{m \times n} and the function f: \Cn \rightarrow \mathbb R defined by f( x ) = \| A x \| \text{.} For what matrices A is the function f a norm?