Department of Computer Science

Machine Learning Research Group

University of Texas at Austin Artificial Intelligence Lab

Publications: 2024

  1. CAT-BENCH: Benchmarking Language Model Understanding of Causal and Temporal Dependencies in Plans
    [Details] [PDF]
    Yash Kumar Lal, Vanya Cohen, Nathanael Chambers, Niranjan Balasubramanian, Raymond Mooney
    Preprint, January 2024.
    Understanding the abilities of LLMs to reason about natural language plans, such as instructional text and recipes, is critical to reliably using them in decision-making systems. A fundamental aspect of plans is the temporal order in which their steps needs to be executed, which reflects the underlying causal dependencies between them. We introduce CaT-Bench, a benchmark of Step Order Prediction questions, which test whether a step must necessarily occur before or after another in cooking recipe plans. We use this to evaluate how well frontier LLMs understand causal and temporal dependencies. We find that SOTA LLMs are underwhelming (best zero-shot is only 0.59 in F1), and are biased towards predicting dependence more often, perhaps relying on temporal order of steps as a heuristic. While prompting for explanations and using few-shot examples improve performance, the best F1 result is only 0.73. Further, human evaluation of explanations along with answer correctness show that, on average, humans do not agree with model reasoning. Surprisingly, we also find that explaining after answering leads to better performance than normal chain-of-thought prompting, and LLM answers are not consistent across questions about the same step pairs. Overall, results show that LLMs' ability to detect dependence between steps has significant room for improvement.
    ML ID: 433
  2. Natural Language Can Help Bridge the Sim2Real Gap
    [Details] [PDF] [Video]
    Albert Yu, Adeline Foote, Raymond Mooney, and Roberto Martín-Martín
    In Robotics, Science and Systems (RSS), July 2024.
    The main challenge in learning image-conditioned robotic policies is acquiring a visual representation conducive to low-level control. Due to the high dimensionality of the image space, learning a good visual representation requires a considerable amount of visual data. However, when learning in the real world, data is expensive. Sim2Real is a promising paradigm for overcoming data scarcity in the real-world target domain by using a simulator to collect large amounts of cheap data closely related to the target task. However, it is difficult to transfer an image-conditioned policy from sim to real when the domains are very visually dissimilar. To bridge the sim2real visual gap, we propose using natural language descriptions of images as a unifying signal across domains that captures the underlying task-relevant semantics. Our key insight is that if two image observations from different domains are labeled with similar language, the policy should predict similar action distributions for both images. We demonstrate that training the image encoder to predict the language description or the distance between descriptions of a sim or real image serves as a useful, data-efficient pretraining step that helps learn a domain-invariant image representation. We can then use this image encoder as the backbone of an IL policy trained simultaneously on a large amount of simulated and a handful of real demonstrations. Our approach outperforms widely used prior sim2real methods and strong vision-language pretraining baselines like CLIP and R3M by 25 to 40 percent. See additional videos and materials at our project website.
    ML ID: 432
  3. Multimodal Contextualized Semantic Parsing from Speech
    [Details] [PDF]
    Jordan Voas, Raymond Mooney, David Harwath
    In Association for Computational Linguistics (ACL), August 2024.
    We introduce Semantic Parsing in Contextual Environments (SPICE), a task designed to enhance artificial agents’ contextual awareness by integrating multimodal inputs with prior contexts. SPICE goes beyond traditional semantic parsing by offering a structured, interpretable framework for dynamically updating an agent’s knowledge with new information, mirroring the complexity of human communication. We develop the VG-SPICE dataset, crafted to challenge agents with visual scene graph construction from spoken conversational exchanges, highlighting speech and visual data integration. We also present the Audio-Vision Dialogue Scene Parser (AViD-SP) developed for use on VG-SPICE. These innovations aim to improve multimodal information processing and integration. Both the VG-SPICE dataset and the AViD-SP model are publicly available.
    ML ID: 431
  4. A Survey of Robotic Language Grounding: Tradeoffs Between Symbols and Embeddings
    [Details] [PDF]
    Vanya Cohen, Jason Xinyu Liu, Raymond Mooney, Stefanie Tellex, David Watkins
    In International Joint Conference on Artificial Intelligence (IJCAI), August 2024.
    With large language models, robots can understand language more flexibly and more capable than ever before. This survey reviews recent literature and situates it into a spectrum with two poles: 1) mapping between language and some manually defined formal representation of meaning, and 2) mapping between language and high-dimensional vector spaces that translate directly to low-level robot policy. Using a formal representation allows the meaning of the language to be precisely represented, limits the size of the learning problem, and leads to a framework for interpretability and formal safety guarantees. Methods that embed language and perceptual data into high-dimensional spaces avoid this manually specified symbolic structure and thus have the potential to be more general when fed enough data but require more data and computing to train. We discuss the benefits and trade-offs of each approach and finish by providing directions for future work that achieves the best of both worlds.
    ML ID: 430
  5. CONTRADOC: Understanding Self-Contradictions in Documents with Large Language Models
    [Details] [PDF] [Poster]
    Jierui Li, Vipul Raheja, Dhruv Kumar
    In North American Chapter of the Association for Computational Linguistics (NAACL), August 2024.
    In recent times, large language models (LLMs) have shown impressive performance on various document-level tasks such as document classification, summarization, and question-answering. However, research on understanding their capabilities on the task of self-contradictions in long documents has been very limited. In this work, we introduce CONTRADOC, the first human-annotated dataset to study self-contradictions in long documents across multiple domains, varying document lengths, self-contradiction types, and appearance scope. We then analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset. While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context. We release the dataset 1 and all the code associated with the experiments.
    ML ID: 429
  6. When is Tree Search Useful for LLM Planning? It Depends on the Discriminator
    [Details] [PDF]
    Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, Huan Sun
    In Association for Computational Linguistics (ACL), August 2024.
    In this paper, we examine how large language models (LLMs) solve multi-step problems under a language agent framework with three components: a generator, discriminator, and a planning method. We investigate the practical utility of two advanced planning methods, iterative correction and tree search. We present a comprehensive analysis of how discrimination accuracy affects the overall performance of agents when using these two methods or a simpler method, re-ranking. Experiments on two tasks, text-to-SQL parsing and mathematical reasoning, show that: (1) advanced planning methods demand discriminators with at least 90 percent accuracy to achieve significant improvements over re-ranking; (2) current LLMs’ discrimination abilities have not met the needs of advanced planning methods to achieve such improvements; (3) with LLM-based discriminators, advanced planning methods may not adequately balance accuracy and efficiency. For example, compared to the other two methods, tree search is at least 10–20 times slower but leads to negligible performance gains, which hinders its real-world applications.
    ML ID: 428
  7. Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs
    [Details] [PDF]
    Jierui Li and Raymond Mooney
    preprint, April 2024.
    Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models (LLMs) across various tasks. However, when tackling complex tasks that pose significant challenges for state-of-the-art models, this technique often struggles to produce effective chains of thought that lead to correct answers. In this work, we propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions. We apply our method to solving competitive-level programming challenges. More specifically, we employ an LLM to generate explanations for a set of pairs, then use pairs to fine-tune a smaller language model, which we refer to as the Reasoner, to learn algorithmic reasoning that can generate "how-to-solve" hints for unseen problems. Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder, resulting in higher solve rates than strong chain-of-thought baselines on competitive-level programming problems. It also outperforms models that learn directly from pairs. We curated an additional test set in the CodeContests format, which includes 246 more recent problems posted after the models' knowledge cutoff.
    ML ID: 427
  8. CAPE: Corrective Actions from Precondition Errors using Large Language Models
    [Details] [PDF]
    Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric Rosen, Raymond Mooney, Stefanie Tellex, and David Paulius
    In International Conference on Robotics and Automation (ICRA), May 2024.
    Extracting knowledge and reasoning from large language models (LLMs) offers a path to designing intelligent robots. Common approaches that leverage LLMs for planning are unable to recover when actions fail and resort to retrying failed actions without resolving the underlying cause. We propose a novel approach (CAPE) that generates corrective actions to resolve precondition errors during planning. CAPE improves the quality of generated plans through few-shot reasoning on action preconditions. Our approach enables embodied agents to execute more tasks than baseline methods while maintaining semantic correctness and minimizing re-prompting. In VirtualHome, CAPE improves a human-annotated plan correctness metric from 28.89 percent to 49.63 percent over SayCan, whilst achieving competitive executability. Our improvements transfer to a Boston Dynamics Spot robot initialized with a set of skills (specified in language) and associated preconditions, where CAPE improves correctness by 76.49 percent with higher executability compared to SayCan. Our approach enables embodied agents to follow natural language commands and robustly recover from failures.
    ML ID: 426
  9. Sparse Meets Dense: A Hybrid Approach to Enhance Scientific Document Retrieval
    [Details] [PDF] [Slides (PPT)]
    Priyanka Mandikal, Raymond Mooney
    In The 4th Workshop on Scientific Document Understanding, AAAI, February 2024.
    Traditional information retrieval is based on sparse bag-of-words vector representations of documents and queries. More recent deep-learning approaches have used dense embeddings learned using a transformer-based large language model. We show that on a classic benchmark on scientific document retrieval in the medical domain of cystic fibrosis, that both of these models perform roughly equivalently. Notably, dense vectors from the state-of-the-art SPECTER2 model do not significantly enhance performance. However, a hybrid model that we propose combining these methods yields significantly better results, underscoring the merits of integrating classical and contemporary deep learning techniques in information retrieval in the domain of specialized scientific documents.
    ML ID: 425