Fixing function for fty-info structures.
(fty-info-fix x) → new-x
Function:
(defun fty-info-fix$inline (x) (declare (xargs :guard (fty-info-p x))) (let ((acl2::__function__ 'fty-info-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((name (symbol-fix (cdr (std::da-nth 0 x)))) (category (symbol-fix (cdr (std::da-nth 1 x)))) (type (symbol-fix (cdr (std::da-nth 2 x)))) (guards (symbol-list-fix (cdr (std::da-nth 3 x)))) (returns (symbol-fix (cdr (std::da-nth 4 x))))) (list (cons 'name name) (cons 'category category) (cons 'type type) (cons 'guards guards) (cons 'returns returns))) :exec x)))
Theorem:
(defthm fty-info-p-of-fty-info-fix (b* ((new-x (fty-info-fix$inline x))) (fty-info-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm fty-info-fix-when-fty-info-p (implies (fty-info-p x) (equal (fty-info-fix x) x)))
Function:
(defun fty-info-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (fty-info-p acl2::x) (fty-info-p acl2::y)))) (equal (fty-info-fix acl2::x) (fty-info-fix acl2::y)))
Theorem:
(defthm fty-info-equiv-is-an-equivalence (and (booleanp (fty-info-equiv x y)) (fty-info-equiv x x) (implies (fty-info-equiv x y) (fty-info-equiv y x)) (implies (and (fty-info-equiv x y) (fty-info-equiv y z)) (fty-info-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm fty-info-equiv-implies-equal-fty-info-fix-1 (implies (fty-info-equiv acl2::x x-equiv) (equal (fty-info-fix acl2::x) (fty-info-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm fty-info-fix-under-fty-info-equiv (fty-info-equiv (fty-info-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-fty-info-fix-1-forward-to-fty-info-equiv (implies (equal (fty-info-fix acl2::x) acl2::y) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-fty-info-fix-2-forward-to-fty-info-equiv (implies (equal acl2::x (fty-info-fix acl2::y)) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-equiv-of-fty-info-fix-1-forward (implies (fty-info-equiv (fty-info-fix acl2::x) acl2::y) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm fty-info-equiv-of-fty-info-fix-2-forward (implies (fty-info-equiv acl2::x (fty-info-fix acl2::y)) (fty-info-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)