(symbol-list-fix x) is a usual fty list fixing function.
(symbol-list-fix x) → fty::newx
In the logic, we apply symbol-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.
Function:
(defun symbol-list-fix$inline (x) (declare (xargs :guard (symbol-listp x))) (let ((__function__ 'symbol-list-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (cons (symbol-fix (car x)) (symbol-list-fix (cdr x)))) :exec x)))
Theorem:
(defthm symbol-listp-of-symbol-list-fix (b* ((fty::newx (symbol-list-fix$inline x))) (symbol-listp fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm symbol-list-fix-when-symbol-listp (implies (symbol-listp x) (equal (symbol-list-fix x) x)))
Function:
(defun symbol-list-equiv$inline (x y) (declare (xargs :guard (and (symbol-listp x) (symbol-listp y)))) (equal (symbol-list-fix x) (symbol-list-fix y)))
Theorem:
(defthm symbol-list-equiv-is-an-equivalence (and (booleanp (symbol-list-equiv x y)) (symbol-list-equiv x x) (implies (symbol-list-equiv x y) (symbol-list-equiv y x)) (implies (and (symbol-list-equiv x y) (symbol-list-equiv y z)) (symbol-list-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm symbol-list-equiv-implies-equal-symbol-list-fix-1 (implies (symbol-list-equiv x x-equiv) (equal (symbol-list-fix x) (symbol-list-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm symbol-list-fix-under-symbol-list-equiv (symbol-list-equiv (symbol-list-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-symbol-list-fix-1-forward-to-symbol-list-equiv (implies (equal (symbol-list-fix x) y) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-symbol-list-fix-2-forward-to-symbol-list-equiv (implies (equal x (symbol-list-fix y)) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm symbol-list-equiv-of-symbol-list-fix-1-forward (implies (symbol-list-equiv (symbol-list-fix x) y) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm symbol-list-equiv-of-symbol-list-fix-2-forward (implies (symbol-list-equiv x (symbol-list-fix y)) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm car-of-symbol-list-fix-x-under-symbol-equiv (symbol-equiv (car (symbol-list-fix x)) (car x)))
Theorem:
(defthm car-symbol-list-equiv-congruence-on-x-under-symbol-equiv (implies (symbol-list-equiv x x-equiv) (symbol-equiv (car x) (car x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cdr-of-symbol-list-fix-x-under-symbol-list-equiv (symbol-list-equiv (cdr (symbol-list-fix x)) (cdr x)))
Theorem:
(defthm cdr-symbol-list-equiv-congruence-on-x-under-symbol-list-equiv (implies (symbol-list-equiv x x-equiv) (symbol-list-equiv (cdr x) (cdr x-equiv))) :rule-classes :congruence)
Theorem:
(defthm cons-of-symbol-fix-x-under-symbol-list-equiv (symbol-list-equiv (cons (symbol-fix x) y) (cons x y)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-x-under-symbol-list-equiv (implies (symbol-equiv x x-equiv) (symbol-list-equiv (cons x y) (cons x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm cons-of-symbol-list-fix-y-under-symbol-list-equiv (symbol-list-equiv (cons x (symbol-list-fix y)) (cons x y)))
Theorem:
(defthm cons-symbol-list-equiv-congruence-on-y-under-symbol-list-equiv (implies (symbol-list-equiv y y-equiv) (symbol-list-equiv (cons x y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-symbol-list-fix (equal (consp (symbol-list-fix x)) (consp x)))
Theorem:
(defthm symbol-list-fix-under-iff (iff (symbol-list-fix x) (consp x)))
Theorem:
(defthm symbol-list-fix-of-cons (equal (symbol-list-fix (cons a x)) (cons (symbol-fix a) (symbol-list-fix x))))
Theorem:
(defthm len-of-symbol-list-fix (equal (len (symbol-list-fix x)) (len x)))
Theorem:
(defthm symbol-list-fix-of-append (equal (symbol-list-fix (append std::a std::b)) (append (symbol-list-fix std::a) (symbol-list-fix std::b))))
Theorem:
(defthm symbol-list-fix-of-repeat (equal (symbol-list-fix (repeat n x)) (repeat n (symbol-fix x))))
Theorem:
(defthm list-equiv-refines-symbol-list-equiv (implies (list-equiv x y) (symbol-list-equiv x y)) :rule-classes :refinement)
Theorem:
(defthm nth-of-symbol-list-fix (equal (nth n (symbol-list-fix x)) (if (< (nfix n) (len x)) (symbol-fix (nth n x)) nil)))
Theorem:
(defthm symbol-list-equiv-implies-symbol-list-equiv-append-1 (implies (symbol-list-equiv x fty::x-equiv) (symbol-list-equiv (append x y) (append fty::x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm symbol-list-equiv-implies-symbol-list-equiv-append-2 (implies (symbol-list-equiv y fty::y-equiv) (symbol-list-equiv (append x y) (append x fty::y-equiv))) :rule-classes (:congruence))
Theorem:
(defthm symbol-list-equiv-implies-symbol-list-equiv-nthcdr-2 (implies (symbol-list-equiv l l-equiv) (symbol-list-equiv (nthcdr n l) (nthcdr n l-equiv))) :rule-classes (:congruence))
Theorem:
(defthm symbol-list-equiv-implies-symbol-list-equiv-take-2 (implies (symbol-list-equiv l l-equiv) (symbol-list-equiv (take n l) (take n l-equiv))) :rule-classes (:congruence))