Basic equivalence relation for symbol-list structures.
Function:
(defun symbol-list-equiv$inline (x y) (declare (xargs :guard (and (symbol-listp x) (symbol-listp y)))) (equal (symbol-list-fix x) (symbol-list-fix y)))
Theorem:
(defthm symbol-list-equiv-is-an-equivalence (and (booleanp (symbol-list-equiv x y)) (symbol-list-equiv x x) (implies (symbol-list-equiv x y) (symbol-list-equiv y x)) (implies (and (symbol-list-equiv x y) (symbol-list-equiv y z)) (symbol-list-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm symbol-list-equiv-implies-equal-symbol-list-fix-1 (implies (symbol-list-equiv x x-equiv) (equal (symbol-list-fix x) (symbol-list-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm symbol-list-fix-under-symbol-list-equiv (symbol-list-equiv (symbol-list-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-symbol-list-fix-1-forward-to-symbol-list-equiv (implies (equal (symbol-list-fix x) y) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-symbol-list-fix-2-forward-to-symbol-list-equiv (implies (equal x (symbol-list-fix y)) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm symbol-list-equiv-of-symbol-list-fix-1-forward (implies (symbol-list-equiv (symbol-list-fix x) y) (symbol-list-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm symbol-list-equiv-of-symbol-list-fix-2-forward (implies (symbol-list-equiv x (symbol-list-fix y)) (symbol-list-equiv x y)) :rule-classes :forward-chaining)