(vl-hidsolo-mark mtype force-bogusp hid ss st ctx) → new-st
Function:
(defun vl-hidsolo-mark (mtype force-bogusp hid ss st ctx) (declare (xargs :guard (and (member mtype '(:used :set)) (booleanp force-bogusp) (vl-expr-p hid) (vl-scopestack-p ss) (vl-lucidstate-p st) (vl-context1-p ctx)))) (declare (xargs :guard (vl-hidexpr-p hid))) (let ((__function__ 'vl-hidsolo-mark)) (declare (ignorable __function__)) (b* (((mv err trace tail) (vl-follow-hidexpr hid ss ctx)) ((when err) (b* (((vl-lucidstate st))) (change-vl-lucidstate st :warnings st.warnings))) ((cons (vl-hidstep step) rest) trace) (key (make-vl-lucidkey :item step.item :scopestack (vl-normalize-scopestack step.ss))) (occ (if (or force-bogusp (not (vl-hidexpr->endp tail))) (make-vl-lucidocc-tail :ctx ctx :ss ss) (make-vl-lucidocc-solo :ctx ctx :ss ss))) (st (vl-hidtrace-mark-interfaces mtype rest ss st ctx)) (st (vl-lucidstate-mark mtype key occ st ctx))) st)))
Theorem:
(defthm vl-lucidstate-p-of-vl-hidsolo-mark (b* ((new-st (vl-hidsolo-mark mtype force-bogusp hid ss st ctx))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-hidsolo-mark-of-bool-fix-force-bogusp (equal (vl-hidsolo-mark mtype (acl2::bool-fix force-bogusp) hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-iff-congruence-on-force-bogusp (implies (iff force-bogusp force-bogusp-equiv) (equal (vl-hidsolo-mark mtype force-bogusp hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp-equiv hid ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-expr-fix-hid (equal (vl-hidsolo-mark mtype force-bogusp (vl-expr-fix hid) ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-expr-equiv-congruence-on-hid (implies (vl-expr-equiv hid hid-equiv) (equal (vl-hidsolo-mark mtype force-bogusp hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid-equiv ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-scopestack-fix-ss (equal (vl-hidsolo-mark mtype force-bogusp hid (vl-scopestack-fix ss) st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-hidsolo-mark mtype force-bogusp hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss-equiv st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-lucidstate-fix-st (equal (vl-hidsolo-mark mtype force-bogusp hid ss (vl-lucidstate-fix st) ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-hidsolo-mark mtype force-bogusp hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-hidsolo-mark-of-vl-context1-fix-ctx (equal (vl-hidsolo-mark mtype force-bogusp hid ss st (vl-context1-fix ctx)) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx)))
Theorem:
(defthm vl-hidsolo-mark-vl-context1-equiv-congruence-on-ctx (implies (vl-context1-equiv ctx ctx-equiv) (equal (vl-hidsolo-mark mtype force-bogusp hid ss st ctx) (vl-hidsolo-mark mtype force-bogusp hid ss st ctx-equiv))) :rule-classes :congruence)