Symbolic version of 4vec-wildeq.
Function:
(defun a4vec-wildeq (a b) (declare (xargs :guard (and (a4vec-p a) (a4vec-p b)))) (let ((__function__ 'a4vec-wildeq)) (declare (ignorable __function__)) (b* (((a4vec a)) ((a4vec b)) ((mv ans.upper ans.lower) (a4vec-wildeq-aux a.upper a.lower b.upper b.lower))) (a4vec (list ans.upper) (list ans.lower)))))
Theorem:
(defthm a4vec-p-of-a4vec-wildeq (b* ((res (a4vec-wildeq a b))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-wildeq-correct (equal (a4vec-eval (a4vec-wildeq a b) env) (4vec-wildeq (a4vec-eval a env) (a4vec-eval b env))))
Theorem:
(defthm a4vec-wildeq-of-a4vec-fix-a (equal (a4vec-wildeq (a4vec-fix a) b) (a4vec-wildeq a b)))
Theorem:
(defthm a4vec-wildeq-a4vec-equiv-congruence-on-a (implies (a4vec-equiv a a-equiv) (equal (a4vec-wildeq a b) (a4vec-wildeq a-equiv b))) :rule-classes :congruence)
Theorem:
(defthm a4vec-wildeq-of-a4vec-fix-b (equal (a4vec-wildeq a (a4vec-fix b)) (a4vec-wildeq a b)))
Theorem:
(defthm a4vec-wildeq-a4vec-equiv-congruence-on-b (implies (a4vec-equiv b b-equiv) (equal (a4vec-wildeq a b) (a4vec-wildeq a b-equiv))) :rule-classes :congruence)