True if for every pair of corresponding bits of a and b, either they are equal or the bit from b is X or Z.
This is the Verilog semantics for the
Function:
(defun 4vec-wildeq (a b) (declare (xargs :guard (and (4vec-p a) (4vec-p b)))) (let ((__function__ '4vec-wildeq)) (declare (ignorable __function__)) (b* ((eq (3vec-bitnot (4vec-bitxor a b))) ((4vec b)) (zxmask (logxor b.upper b.lower))) (3vec-reduction-and (3vec-bitor eq (2vec zxmask))))))
Theorem:
(defthm 4vec-p-of-4vec-wildeq (b* ((res (4vec-wildeq a b))) (4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm 4vec-wildeq-of-3vec-fix-a (equal (4vec-wildeq (3vec-fix a) b) (4vec-wildeq a b)))
Theorem:
(defthm 4vec-wildeq-3vec-equiv-congruence-on-a (implies (3vec-equiv a a-equiv) (equal (4vec-wildeq a b) (4vec-wildeq a-equiv b))) :rule-classes :congruence)
Theorem:
(defthm 4vec-wildeq-of-3vec-fix-b (equal (4vec-wildeq a (3vec-fix b)) (4vec-wildeq a b)))
Theorem:
(defthm 4vec-wildeq-3vec-equiv-congruence-on-b (implies (3vec-equiv b b-equiv) (equal (4vec-wildeq a b) (4vec-wildeq a b-equiv))) :rule-classes :congruence)