Symbolic version of 4vec-resor.
Function:
(defun a4vec-resor (a b) (declare (xargs :guard (and (a4vec-p a) (a4vec-p b)))) (let ((__function__ 'a4vec-resor)) (declare (ignorable __function__)) (b* (((a4vec a)) ((a4vec b))) (a4vec (aig-logior-ss a.upper b.upper) (aig-logior-sss (aig-logand-ss a.upper a.lower) (aig-logand-ss b.upper b.lower) (aig-logand-ss a.lower b.lower))))))
Theorem:
(defthm a4vec-p-of-a4vec-resor (b* ((res (a4vec-resor a b))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-resor-correct (equal (a4vec-eval (a4vec-resor x y) env) (4vec-resor (a4vec-eval x env) (a4vec-eval y env))))
Theorem:
(defthm a4vec-resor-of-a4vec-fix-a (equal (a4vec-resor (a4vec-fix a) b) (a4vec-resor a b)))
Theorem:
(defthm a4vec-resor-a4vec-equiv-congruence-on-a (implies (a4vec-equiv a a-equiv) (equal (a4vec-resor a b) (a4vec-resor a-equiv b))) :rule-classes :congruence)
Theorem:
(defthm a4vec-resor-of-a4vec-fix-b (equal (a4vec-resor a (a4vec-fix b)) (a4vec-resor a b)))
Theorem:
(defthm a4vec-resor-a4vec-equiv-congruence-on-b (implies (a4vec-equiv b b-equiv) (equal (a4vec-resor a b) (a4vec-resor a b-equiv))) :rule-classes :congruence)