(sv::aig-logand-ss a b) → a&b
Function:
(defun sv::aig-logand-ss (a b) (declare (xargs :guard (and (true-listp a) (true-listp b)))) (let ((__function__ 'sv::aig-logand-ss)) (declare (ignorable __function__)) (b* (((mv af ar aend) (first/rest/end a)) ((when aend) (sv::aig-ite-bss af b '(nil))) ((mv bf br bend) (first/rest/end b)) ((when bend) (sv::aig-ite-bss bf a '(nil))) (c (acl2::aig-and af bf)) (r (sv::aig-logand-ss ar br))) (sv::aig-scons c r))))
Theorem:
(defthm sv::true-listp-of-aig-logand-ss (b* ((a&b (sv::aig-logand-ss a b))) (true-listp a&b)) :rule-classes :type-prescription)
Theorem:
(defthm sv::aig-logand-ss-correct (b* ((a&b (sv::aig-logand-ss a b))) (and (equal (sv::aig-list->s a&b env) (logand (sv::aig-list->s a env) (sv::aig-list->s b env))))))