Symbolic version of 3vec-bitand.
Function:
(defun a3vec-bitand (x y) (declare (xargs :guard (and (a4vec-p x) (a4vec-p y)))) (let ((__function__ 'a3vec-bitand)) (declare (ignorable __function__)) (b* (((a4vec x)) ((a4vec y))) (a4vec (aig-logand-ss x.upper y.upper) (aig-logand-ss x.lower y.lower)))))
Theorem:
(defthm a4vec-p-of-a3vec-bitand (b* ((res (a3vec-bitand x y))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a3vec-bitand-correct (equal (a4vec-eval (a3vec-bitand x y) env) (3vec-bitand (a4vec-eval x env) (a4vec-eval y env))))
Theorem:
(defthm a3vec-bitand-of-a4vec-fix-x (equal (a3vec-bitand (a4vec-fix x) y) (a3vec-bitand x y)))
Theorem:
(defthm a3vec-bitand-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (a3vec-bitand x y) (a3vec-bitand x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm a3vec-bitand-of-a4vec-fix-y (equal (a3vec-bitand x (a4vec-fix y)) (a3vec-bitand x y)))
Theorem:
(defthm a3vec-bitand-a4vec-equiv-congruence-on-y (implies (a4vec-equiv y y-equiv) (equal (a3vec-bitand x y) (a3vec-bitand x y-equiv))) :rule-classes :congruence)