Symbolic version of 4vec-resand.
Function:
(defun a4vec-resand (a b) (declare (xargs :guard (and (a4vec-p a) (a4vec-p b)))) (let ((__function__ 'a4vec-resand)) (declare (ignorable __function__)) (b* (((a4vec a)) ((a4vec b))) (a4vec (aig-logand-sss (aig-logior-ss a.upper a.lower) (aig-logior-ss b.upper b.lower) (aig-logior-ss a.upper b.upper)) (aig-logand-ss a.lower b.lower)))))
Theorem:
(defthm a4vec-p-of-a4vec-resand (b* ((res (a4vec-resand a b))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-resand-correct (equal (a4vec-eval (a4vec-resand x y) env) (4vec-resand (a4vec-eval x env) (a4vec-eval y env))))
Theorem:
(defthm a4vec-resand-of-a4vec-fix-a (equal (a4vec-resand (a4vec-fix a) b) (a4vec-resand a b)))
Theorem:
(defthm a4vec-resand-a4vec-equiv-congruence-on-a (implies (a4vec-equiv a a-equiv) (equal (a4vec-resand a b) (a4vec-resand a-equiv b))) :rule-classes :congruence)
Theorem:
(defthm a4vec-resand-of-a4vec-fix-b (equal (a4vec-resand a (a4vec-fix b)) (a4vec-resand a b)))
Theorem:
(defthm a4vec-resand-a4vec-equiv-congruence-on-b (implies (a4vec-equiv b b-equiv) (equal (a4vec-resand a b) (a4vec-resand a b-equiv))) :rule-classes :congruence)