Symbolic version of 4vec-symwildeq.
Function:
(defun a4vec-symwildeq (a b) (declare (xargs :guard (and (a4vec-p a) (a4vec-p b)))) (let ((__function__ 'a4vec-symwildeq)) (declare (ignorable __function__)) (b* (((a4vec a)) ((a4vec b)) (eq (a3vec-bitnot (a3vec-bitxor (a3vec-fix a) (a3vec-fix b)))) (zmask (aig-logior-ss (aig-logandc1-ss b.upper b.lower) (aig-logandc1-ss a.upper a.lower)))) (a3vec-reduction-and (a3vec-bitor eq (a4vec zmask zmask))))))
Theorem:
(defthm a4vec-p-of-a4vec-symwildeq (b* ((res (a4vec-symwildeq a b))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a4vec-symwildeq-correct (equal (a4vec-eval (a4vec-symwildeq a b) env) (4vec-symwildeq (a4vec-eval a env) (a4vec-eval b env))))
Theorem:
(defthm a4vec-symwildeq-of-a4vec-fix-a (equal (a4vec-symwildeq (a4vec-fix a) b) (a4vec-symwildeq a b)))
Theorem:
(defthm a4vec-symwildeq-a4vec-equiv-congruence-on-a (implies (a4vec-equiv a a-equiv) (equal (a4vec-symwildeq a b) (a4vec-symwildeq a-equiv b))) :rule-classes :congruence)
Theorem:
(defthm a4vec-symwildeq-of-a4vec-fix-b (equal (a4vec-symwildeq a (a4vec-fix b)) (a4vec-symwildeq a b)))
Theorem:
(defthm a4vec-symwildeq-a4vec-equiv-congruence-on-b (implies (a4vec-equiv b b-equiv) (equal (a4vec-symwildeq a b) (a4vec-symwildeq a b-equiv))) :rule-classes :congruence)