Symbolic version of 3vec-reduction-and.
Function:
(defun a3vec-reduction-and (x) (declare (xargs :guard (a4vec-p x))) (let ((__function__ 'a3vec-reduction-and)) (declare (ignorable __function__)) (b* (((a4vec x))) (a4vec (aig-sterm (aig-=-ss x.upper (aig-sterm t))) (aig-sterm (aig-=-ss x.lower (aig-sterm t)))))))
Theorem:
(defthm a4vec-p-of-a3vec-reduction-and (b* ((res (a3vec-reduction-and x))) (a4vec-p res)) :rule-classes :rewrite)
Theorem:
(defthm a3vec-reduction-and-correct (equal (a4vec-eval (a3vec-reduction-and x) env) (3vec-reduction-and (a4vec-eval x env))))
Theorem:
(defthm a3vec-reduction-and-of-a4vec-fix-x (equal (a3vec-reduction-and (a4vec-fix x)) (a3vec-reduction-and x)))
Theorem:
(defthm a3vec-reduction-and-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (a3vec-reduction-and x) (a3vec-reduction-and x-equiv))) :rule-classes :congruence)