(moddb-norm-p moddb) → *
Function:
(defun moddb-norm-p (moddb) (declare (xargs :stobjs (moddb))) (declare (xargs :non-executable t)) (declare (xargs :guard t)) (prog2$ (acl2::throw-nonexec-error 'moddb-norm-p (list moddb)) (let ((__function__ 'moddb-norm-p)) (declare (ignorable __function__)) (equal (moddb-norm moddb) moddb))))
Function:
(defun moddb-norm-equiv (x y) (declare (xargs :non-executable t)) (prog2$ (acl2::throw-nonexec-error 'moddb-norm-equiv (list x y)) (equal (moddb-norm x) (moddb-norm y))))
Theorem:
(defthm moddb-norm-equiv-is-an-equivalence (and (booleanp (moddb-norm-equiv x y)) (moddb-norm-equiv x x) (implies (moddb-norm-equiv x y) (moddb-norm-equiv y x)) (implies (and (moddb-norm-equiv x y) (moddb-norm-equiv y z)) (moddb-norm-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm moddb-norm-equiv-implies-equal-moddb-norm-1 (implies (moddb-norm-equiv x x-equiv) (equal (moddb-norm x) (moddb-norm x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm moddb-norm-under-moddb-norm-equiv (moddb-norm-equiv (moddb-norm x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-moddb-norm-1-forward-to-moddb-norm-equiv (implies (equal (moddb-norm x) y) (moddb-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-moddb-norm-2-forward-to-moddb-norm-equiv (implies (equal x (moddb-norm y)) (moddb-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm moddb-norm-equiv-of-moddb-norm-1-forward (implies (moddb-norm-equiv (moddb-norm x) y) (moddb-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm moddb-norm-equiv-of-moddb-norm-2-forward (implies (moddb-norm-equiv x (moddb-norm y)) (moddb-norm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm acl2::nth-of-moddb-norm-moddb-under-nat-equiv (nat-equiv (nth *moddb->nmods* (moddb-norm moddb)) (nth *moddb->nmods* moddb)))
Theorem:
(defthm acl2::nth-moddb-norm-equiv-congruence-on-moddb-under-nat-equiv (implies (moddb-norm-equiv moddb acl2::moddb-equiv) (nat-equiv (nth *moddb->nmods* moddb) (nth *moddb->nmods* acl2::moddb-equiv))) :rule-classes :congruence)
Theorem:
(defthm acl2::take-of-elab-modlist-norm-mods-under-elab-modlist-equiv (elab-modlist-equiv (take n (elab-modlist-norm mods)) (take n mods)))
Theorem:
(defthm acl2::take-elab-modlist-norm-equiv-congruence-on-mods-under-elab-modlist-equiv (implies (elab-modlist-norm-equiv mods acl2::mods-equiv) (elab-modlist-equiv (take n mods) (take n acl2::mods-equiv))) :rule-classes :congruence)
Theorem:
(defthm acl2::update-nth-of-elab-modlist-norm-mods-under-moddb-norm-equiv (moddb-norm-equiv (update-nth *moddb->modsi* (elab-modlist-norm mods) moddb) (update-nth *moddb->modsi* mods moddb)))
Theorem:
(defthm acl2::update-nth-elab-modlist-norm-equiv-congruence-on-mods-under-moddb-norm-equiv (implies (elab-modlist-norm-equiv mods acl2::mods-equiv) (moddb-norm-equiv (update-nth *moddb->modsi* mods moddb) (update-nth *moddb->modsi* acl2::mods-equiv moddb))) :rule-classes :congruence)
Theorem:
(defthm moddb-norm-equiv-nth-module-congruence (implies (and (< (nfix n) (nfix (nth *moddb->nmods* moddb))) (moddb-norm-equiv moddb moddb1)) (equal (elab-mod$a-equiv (nth n (nth *moddb->modsi* moddb)) (nth n (nth *moddb->modsi* moddb1))) t)))
Theorem:
(defthm moddb-fix-under-moddb-norm-equiv (moddb-norm-equiv (moddb-fix x) x))