Basic equivalence relation for elab-modlist structures.
Function:
(defun elab-modlist-equiv$inline (x y) (declare (xargs :guard (and (elab-modlist-p x) (elab-modlist-p y)))) (equal (elab-modlist-fix x) (elab-modlist-fix y)))
Theorem:
(defthm elab-modlist-equiv-is-an-equivalence (and (booleanp (elab-modlist-equiv x y)) (elab-modlist-equiv x x) (implies (elab-modlist-equiv x y) (elab-modlist-equiv y x)) (implies (and (elab-modlist-equiv x y) (elab-modlist-equiv y z)) (elab-modlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm elab-modlist-equiv-implies-equal-elab-modlist-fix-1 (implies (elab-modlist-equiv x x-equiv) (equal (elab-modlist-fix x) (elab-modlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm elab-modlist-fix-under-elab-modlist-equiv (elab-modlist-equiv (elab-modlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-elab-modlist-fix-1-forward-to-elab-modlist-equiv (implies (equal (elab-modlist-fix x) y) (elab-modlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-elab-modlist-fix-2-forward-to-elab-modlist-equiv (implies (equal x (elab-modlist-fix y)) (elab-modlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-equiv-of-elab-modlist-fix-1-forward (implies (elab-modlist-equiv (elab-modlist-fix x) y) (elab-modlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm elab-modlist-equiv-of-elab-modlist-fix-2-forward (implies (elab-modlist-equiv x (elab-modlist-fix y)) (elab-modlist-equiv x y)) :rule-classes :forward-chaining)