Bitwise conjunction of a value of type
Function:
(defun bitand-ullong-sint (x y) (declare (xargs :guard (and (ullongp x) (sintp y)))) (bitand-ullong-ullong x (ullong-from-sint y)))
Theorem:
(defthm ullongp-of-bitand-ullong-sint (ullongp (bitand-ullong-sint x y)))
Theorem:
(defthm bitand-ullong-sint-of-ullong-fix-x (equal (bitand-ullong-sint (ullong-fix x) y) (bitand-ullong-sint x y)))
Theorem:
(defthm bitand-ullong-sint-ullong-equiv-congruence-on-x (implies (ullong-equiv x x-equiv) (equal (bitand-ullong-sint x y) (bitand-ullong-sint x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-ullong-sint-of-sint-fix-y (equal (bitand-ullong-sint x (sint-fix y)) (bitand-ullong-sint x y)))
Theorem:
(defthm bitand-ullong-sint-sint-equiv-congruence-on-y (implies (sint-equiv y y-equiv) (equal (bitand-ullong-sint x y) (bitand-ullong-sint x y-equiv))) :rule-classes :congruence)