Bitwise conjunction of a value of type
Function:
(defun bitand-ullong-ullong (x y) (declare (xargs :guard (and (ullongp x) (ullongp y)))) (ullong-from-integer (logand (integer-from-ullong x) (integer-from-ullong y))))
Theorem:
(defthm ullongp-of-bitand-ullong-ullong (ullongp (bitand-ullong-ullong x y)))
Theorem:
(defthm bitand-ullong-ullong-of-ullong-fix-x (equal (bitand-ullong-ullong (ullong-fix x) y) (bitand-ullong-ullong x y)))
Theorem:
(defthm bitand-ullong-ullong-ullong-equiv-congruence-on-x (implies (ullong-equiv x x-equiv) (equal (bitand-ullong-ullong x y) (bitand-ullong-ullong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm bitand-ullong-ullong-of-ullong-fix-y (equal (bitand-ullong-ullong x (ullong-fix y)) (bitand-ullong-ullong x y)))
Theorem:
(defthm bitand-ullong-ullong-ullong-equiv-congruence-on-y (implies (ullong-equiv y y-equiv) (equal (bitand-ullong-ullong x y) (bitand-ullong-ullong x y-equiv))) :rule-classes :congruence)