Like constprop, but overwrites the original network instead of returning a new one.
(constprop! aignet config) → new-aignet
Function:
(defun constprop! (aignet config) (declare (xargs :stobjs (aignet))) (declare (xargs :guard (constprop-config-p config))) (let ((__function__ 'constprop!)) (declare (ignorable __function__)) (b* (((local-stobjs aignet-tmp) (mv aignet aignet-tmp)) (aignet-tmp (constprop-core aignet aignet-tmp config)) (aignet (aignet-prune-comb aignet-tmp aignet (constprop-config->gatesimp config)))) (mv aignet aignet-tmp))))
Theorem:
(defthm num-ins-of-constprop! (b* ((?new-aignet (constprop! aignet config))) (equal (stype-count :pi new-aignet) (stype-count :pi aignet))))
Theorem:
(defthm num-regs-of-constprop! (b* ((?new-aignet (constprop! aignet config))) (equal (stype-count :reg new-aignet) (stype-count :reg aignet))))
Theorem:
(defthm num-outs-of-constprop! (b* ((?new-aignet (constprop! aignet config))) (equal (stype-count :po new-aignet) (stype-count :po aignet))))
Theorem:
(defthm constprop!-comb-equivalent (b* ((?new-aignet (constprop! aignet config))) (comb-equiv new-aignet aignet)))
Theorem:
(defthm constprop!-of-node-list-fix-aignet (equal (constprop! (node-list-fix aignet) config) (constprop! aignet config)))
Theorem:
(defthm constprop!-node-list-equiv-congruence-on-aignet (implies (node-list-equiv aignet aignet-equiv) (equal (constprop! aignet config) (constprop! aignet-equiv config))) :rule-classes :congruence)
Theorem:
(defthm constprop!-of-constprop-config-fix-config (equal (constprop! aignet (constprop-config-fix config)) (constprop! aignet config)))
Theorem:
(defthm constprop!-constprop-config-equiv-congruence-on-config (implies (constprop-config-equiv config config-equiv) (equal (constprop! aignet config) (constprop! aignet config-equiv))) :rule-classes :congruence)