• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
          • Aignet-impl
          • Node
          • Network
            • Lookup-id
            • Lookup-stype
            • Aignet-extension-p
            • Aignet-nodes-ok
            • Aignet-outputs-aux
            • Aignet-nxsts-aux
            • Fanin
            • Aignet-outputs
            • Lookup-reg->nxst
            • Aignet-lit-fix
            • Aignet-fanins
            • Stype-count
            • Aignet-nxsts
            • Aignet-idp
            • Aignet-norm
            • Aignet-norm-p
            • Aignet-id-fix
            • Fanin-count
            • Proper-node-listp
            • Fanin-node-p
            • Node-list
              • Node-list-fix
                • Node-listp
                • Node-list-equiv
              • Aignet-litp
            • Combinational-type
            • Typecode
            • Stypep
          • Aignet-copy-init
          • Aignet-simplify-with-tracking
          • Aignet-simplify-marked-with-tracking
          • Aignet-cnf
          • Aignet-simplify-marked
          • Aignet-complete-copy
          • Aignet-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Node-list

    Node-list-fix

    (node-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (node-list-fix x) → fty::newx
    Arguments
    x — Guard (node-listp x).
    Returns
    fty::newx — Type (node-listp fty::newx).

    In the logic, we apply node-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: node-list-fix$inline

    (defun node-list-fix$inline (x)
      (declare (xargs :guard (node-listp x)))
      (let ((__function__ 'node-list-fix))
        (declare (ignorable __function__))
        (mbe :logic
             (if (atom x)
                 nil
               (cons (node-fix (car x))
                     (node-list-fix (cdr x))))
             :exec x)))

    Theorem: node-listp-of-node-list-fix

    (defthm node-listp-of-node-list-fix
      (b* ((fty::newx (node-list-fix$inline x)))
        (node-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: node-list-fix-when-node-listp

    (defthm node-list-fix-when-node-listp
      (implies (node-listp x)
               (equal (node-list-fix x) x)))

    Function: node-list-equiv$inline

    (defun node-list-equiv$inline (x acl2::y)
      (declare (xargs :guard (and (node-listp x)
                                  (node-listp acl2::y))))
      (equal (node-list-fix x)
             (node-list-fix acl2::y)))

    Theorem: node-list-equiv-is-an-equivalence

    (defthm node-list-equiv-is-an-equivalence
      (and (booleanp (node-list-equiv x y))
           (node-list-equiv x x)
           (implies (node-list-equiv x y)
                    (node-list-equiv y x))
           (implies (and (node-list-equiv x y)
                         (node-list-equiv y z))
                    (node-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: node-list-equiv-implies-equal-node-list-fix-1

    (defthm node-list-equiv-implies-equal-node-list-fix-1
      (implies (node-list-equiv x x-equiv)
               (equal (node-list-fix x)
                      (node-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: node-list-fix-under-node-list-equiv

    (defthm node-list-fix-under-node-list-equiv
      (node-list-equiv (node-list-fix x) x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-node-list-fix-1-forward-to-node-list-equiv

    (defthm equal-of-node-list-fix-1-forward-to-node-list-equiv
      (implies (equal (node-list-fix x) acl2::y)
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-node-list-fix-2-forward-to-node-list-equiv

    (defthm equal-of-node-list-fix-2-forward-to-node-list-equiv
      (implies (equal x (node-list-fix acl2::y))
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: node-list-equiv-of-node-list-fix-1-forward

    (defthm node-list-equiv-of-node-list-fix-1-forward
      (implies (node-list-equiv (node-list-fix x)
                                acl2::y)
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: node-list-equiv-of-node-list-fix-2-forward

    (defthm node-list-equiv-of-node-list-fix-2-forward
      (implies (node-list-equiv x (node-list-fix acl2::y))
               (node-list-equiv x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-node-list-fix-x-under-node-equiv

    (defthm car-of-node-list-fix-x-under-node-equiv
      (node-equiv (car (node-list-fix x))
                  (car x)))

    Theorem: car-node-list-equiv-congruence-on-x-under-node-equiv

    (defthm car-node-list-equiv-congruence-on-x-under-node-equiv
      (implies (node-list-equiv x x-equiv)
               (node-equiv (car x) (car x-equiv)))
      :rule-classes :congruence)

    Theorem: cdr-of-node-list-fix-x-under-node-list-equiv

    (defthm cdr-of-node-list-fix-x-under-node-list-equiv
      (node-list-equiv (cdr (node-list-fix x))
                       (cdr x)))

    Theorem: cdr-node-list-equiv-congruence-on-x-under-node-list-equiv

    (defthm cdr-node-list-equiv-congruence-on-x-under-node-list-equiv
      (implies (node-list-equiv x x-equiv)
               (node-list-equiv (cdr x) (cdr x-equiv)))
      :rule-classes :congruence)

    Theorem: cons-of-node-fix-x-under-node-list-equiv

    (defthm cons-of-node-fix-x-under-node-list-equiv
      (node-list-equiv (cons (node-fix x) acl2::y)
                       (cons x acl2::y)))

    Theorem: cons-node-equiv-congruence-on-x-under-node-list-equiv

    (defthm cons-node-equiv-congruence-on-x-under-node-list-equiv
      (implies (node-equiv x x-equiv)
               (node-list-equiv (cons x acl2::y)
                                (cons x-equiv acl2::y)))
      :rule-classes :congruence)

    Theorem: cons-of-node-list-fix-y-under-node-list-equiv

    (defthm cons-of-node-list-fix-y-under-node-list-equiv
      (node-list-equiv (cons x (node-list-fix acl2::y))
                       (cons x acl2::y)))

    Theorem: cons-node-list-equiv-congruence-on-y-under-node-list-equiv

    (defthm cons-node-list-equiv-congruence-on-y-under-node-list-equiv
      (implies (node-list-equiv acl2::y y-equiv)
               (node-list-equiv (cons x acl2::y)
                                (cons x y-equiv)))
      :rule-classes :congruence)

    Theorem: consp-of-node-list-fix

    (defthm consp-of-node-list-fix
      (equal (consp (node-list-fix x))
             (consp x)))

    Theorem: node-list-fix-under-iff

    (defthm node-list-fix-under-iff
      (iff (node-list-fix x) (consp x)))

    Theorem: node-list-fix-of-cons

    (defthm node-list-fix-of-cons
      (equal (node-list-fix (cons a x))
             (cons (node-fix a) (node-list-fix x))))

    Theorem: len-of-node-list-fix

    (defthm len-of-node-list-fix
      (equal (len (node-list-fix x)) (len x)))

    Theorem: node-list-fix-of-append

    (defthm node-list-fix-of-append
      (equal (node-list-fix (append std::a std::b))
             (append (node-list-fix std::a)
                     (node-list-fix std::b))))

    Theorem: node-list-fix-of-repeat

    (defthm node-list-fix-of-repeat
      (equal (node-list-fix (acl2::repeat acl2::n x))
             (acl2::repeat acl2::n (node-fix x))))

    Theorem: list-equiv-refines-node-list-equiv

    (defthm list-equiv-refines-node-list-equiv
      (implies (list-equiv x acl2::y)
               (node-list-equiv x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-node-list-fix

    (defthm nth-of-node-list-fix
      (equal (nth acl2::n (node-list-fix x))
             (if (< (nfix acl2::n) (len x))
                 (node-fix (nth acl2::n x))
               nil)))

    Theorem: node-list-equiv-implies-node-list-equiv-append-1

    (defthm node-list-equiv-implies-node-list-equiv-append-1
      (implies (node-list-equiv x fty::x-equiv)
               (node-list-equiv (append x acl2::y)
                                (append fty::x-equiv acl2::y)))
      :rule-classes (:congruence))

    Theorem: node-list-equiv-implies-node-list-equiv-append-2

    (defthm node-list-equiv-implies-node-list-equiv-append-2
      (implies (node-list-equiv acl2::y fty::y-equiv)
               (node-list-equiv (append x acl2::y)
                                (append x fty::y-equiv)))
      :rule-classes (:congruence))

    Theorem: node-list-equiv-implies-node-list-equiv-nthcdr-2

    (defthm node-list-equiv-implies-node-list-equiv-nthcdr-2
      (implies (node-list-equiv acl2::l l-equiv)
               (node-list-equiv (nthcdr acl2::n acl2::l)
                                (nthcdr acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: node-list-equiv-implies-node-list-equiv-take-2

    (defthm node-list-equiv-implies-node-list-equiv-take-2
      (implies (node-list-equiv acl2::l l-equiv)
               (node-list-equiv (take acl2::n acl2::l)
                                (take acl2::n l-equiv)))
      :rule-classes (:congruence))