Level 2 Contradiction Rule 2 and all Level 4 Rules.
(aig-and-pass3 x y) → (mv status arg1 arg2)
Function:
(defun aig-and-pass3$inline (x y) (declare (xargs :guard t)) (let ((__function__ 'aig-and-pass3)) (declare (ignorable __function__)) (b* (((unless (and (not (aig-atom-p x)) (not (eq (cdr x) nil)))) (mv :fail x y)) ((unless (and (not (aig-atom-p y)) (not (eq (cdr y) nil)))) (mv :fail x y)) (a (car x)) (b (cdr x)) (c (car y)) (d (cdr y)) ((when (or (aig-negation-p a c) (aig-negation-p a d) (aig-negation-p b c) (aig-negation-p b d))) (mv :subterm nil nil)) ((when (hons-equal a c)) (mv :reduced x d)) ((when (hons-equal b c)) (mv :reduced x d)) ((when (hons-equal b d)) (mv :reduced x c)) ((when (hons-equal a d)) (mv :reduced x c))) (mv :fail x y))))
Theorem:
(defthm aig-and-pass3-correct (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass3$inline x y))) (equal (and (aig-eval arg1 env) (aig-eval arg2 env)) (and (aig-eval x env) (aig-eval y env)))) :rule-classes nil)
Theorem:
(defthm aig-and-pass3-reduces-count (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass3$inline x y))) (implies (eq status :reduced) (< (+ (aig-and-count arg1) (aig-and-count arg2)) (+ (aig-and-count x) (aig-and-count y))))) :rule-classes nil)
Theorem:
(defthm aig-and-pass3-subterm-convention (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass3$inline x y))) (implies (equal status :subterm) (equal arg2 arg1))))
Theorem:
(defthm aig-and-pass3-normalize-status (b* (((mv ?status ?arg1 ?arg2) (aig-and-pass3$inline x y))) (implies (and (not (equal status :subterm)) (not (equal status :reduced))) (and (equal status :fail) (equal arg1 x) (equal arg2 y)))))