(aig-negation-p x y) determines if the AIGs
(aig-negation-p x y) → *
Function:
(defun aig-negation-p$inline (x y) (declare (xargs :guard t)) (let ((__function__ 'aig-negation-p)) (declare (ignorable __function__)) (or (and (consp y) (eq (cdr y) nil) (hons-equal (car y) x)) (and (consp x) (eq (cdr x) nil) (hons-equal (car x) y)))))
Theorem:
(defthm aig-negation-p-symmetric (equal (aig-negation-p x y) (aig-negation-p y x)))
Theorem:
(defthm aig-negation-p-correct-1 (implies (and (aig-negation-p x y) (aig-eval x env)) (equal (aig-eval y env) nil)))
Theorem:
(defthm aig-negation-p-correct-2 (implies (and (aig-negation-p x y) (not (aig-eval x env))) (equal (aig-eval y env) t)))