(4vs-xor a b) constructs a sexpr representing
Function:
(defun 4vs-xor (a b) (declare (xargs :guard t)) (cond ((or (atom a) (atom b)) (hons-list 'xor a b)) ((4vx-sexpr-p a) a) ((4vx-sexpr-p b) b) ((4vf-sexpr-p a) (4vs-buf b)) ((4vf-sexpr-p b) (4vs-buf a)) ((4vt-sexpr-p a) (4vs-not b)) ((4vt-sexpr-p b) (4vs-not a)) (t (hons-list 'xor a b))))
Theorem:
(defthm 4v-sexpr-eval-of-4vs-xor (equal (4v-sexpr-eval (4vs-xor a b) env) (4v-xor (4v-sexpr-eval a env) (4v-sexpr-eval b env))))