Four-valued semantics for
(4v-xor a b) returns:
See 4v-unfloat for an explanation of the Z case.
Function:
(defun 4v-xor$inline (a b) (declare (xargs :guard t)) (mbe :logic (4vcases a (t (4v-not b)) (f (4v-unfloat b)) (& (4vx))) :exec (cond ((eq a (4vt)) (cond ((eq b (4vt)) (4vf)) ((eq b (4vf)) (4vt)) (t (4vx)))) ((eq a (4vf)) (cond ((eq b (4vt)) (4vt)) ((eq b (4vf)) (4vf)) (t (4vx)))) (t (4vx)))))
Theorem:
(defthm 4v-equiv-implies-equal-4v-xor-2 (implies (4v-equiv b b-equiv) (equal (4v-xor a b) (4v-xor a b-equiv))) :rule-classes (:congruence))
Theorem:
(defthm 4v-equiv-implies-equal-4v-xor-1 (implies (4v-equiv a a-equiv) (equal (4v-xor a b) (4v-xor a-equiv b))) :rule-classes (:congruence))