Fixing function for minor-frame structures.
(minor-frame-fix x) → new-x
Function:
(defun minor-frame-fix$inline (x) (declare (xargs :guard (minor-frame-p x))) (let ((__function__ 'minor-frame-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((bindings (fgl-object-bindings-fix (cdr (std::da-nth 0 x)))) (scratch (scratchlist-fix (cdr (std::da-nth 1 x)))) (term (pseudo-term-fix (cdr (std::da-nth 2 x)))) (term-index (acl2::maybe-natp-fix (cdr (std::da-nth 3 x))))) (list (cons 'bindings bindings) (cons 'scratch scratch) (cons 'term term) (cons 'term-index term-index))) :exec x)))
Theorem:
(defthm minor-frame-p-of-minor-frame-fix (b* ((new-x (minor-frame-fix$inline x))) (minor-frame-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm minor-frame-fix-when-minor-frame-p (implies (minor-frame-p x) (equal (minor-frame-fix x) x)))
Function:
(defun minor-frame-equiv$inline (x y) (declare (xargs :guard (and (minor-frame-p x) (minor-frame-p y)))) (equal (minor-frame-fix x) (minor-frame-fix y)))
Theorem:
(defthm minor-frame-equiv-is-an-equivalence (and (booleanp (minor-frame-equiv x y)) (minor-frame-equiv x x) (implies (minor-frame-equiv x y) (minor-frame-equiv y x)) (implies (and (minor-frame-equiv x y) (minor-frame-equiv y z)) (minor-frame-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm minor-frame-equiv-implies-equal-minor-frame-fix-1 (implies (minor-frame-equiv x x-equiv) (equal (minor-frame-fix x) (minor-frame-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm minor-frame-fix-under-minor-frame-equiv (minor-frame-equiv (minor-frame-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-minor-frame-fix-1-forward-to-minor-frame-equiv (implies (equal (minor-frame-fix x) y) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-minor-frame-fix-2-forward-to-minor-frame-equiv (implies (equal x (minor-frame-fix y)) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm minor-frame-equiv-of-minor-frame-fix-1-forward (implies (minor-frame-equiv (minor-frame-fix x) y) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm minor-frame-equiv-of-minor-frame-fix-2-forward (implies (minor-frame-equiv x (minor-frame-fix y)) (minor-frame-equiv x y)) :rule-classes :forward-chaining)