Basic equivalence relation for minor-frame structures.
Function:
(defun minor-frame-equiv$inline (x y) (declare (xargs :guard (and (minor-frame-p x) (minor-frame-p y)))) (equal (minor-frame-fix x) (minor-frame-fix y)))
Theorem:
(defthm minor-frame-equiv-is-an-equivalence (and (booleanp (minor-frame-equiv x y)) (minor-frame-equiv x x) (implies (minor-frame-equiv x y) (minor-frame-equiv y x)) (implies (and (minor-frame-equiv x y) (minor-frame-equiv y z)) (minor-frame-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm minor-frame-equiv-implies-equal-minor-frame-fix-1 (implies (minor-frame-equiv x x-equiv) (equal (minor-frame-fix x) (minor-frame-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm minor-frame-fix-under-minor-frame-equiv (minor-frame-equiv (minor-frame-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-minor-frame-fix-1-forward-to-minor-frame-equiv (implies (equal (minor-frame-fix x) y) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-minor-frame-fix-2-forward-to-minor-frame-equiv (implies (equal x (minor-frame-fix y)) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm minor-frame-equiv-of-minor-frame-fix-1-forward (implies (minor-frame-equiv (minor-frame-fix x) y) (minor-frame-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm minor-frame-equiv-of-minor-frame-fix-2-forward (implies (minor-frame-equiv x (minor-frame-fix y)) (minor-frame-equiv x y)) :rule-classes :forward-chaining)