(bfr-xor x y) constructs the XOR of these BFRs.
(bfr-xor x y) → *
Function:
(defun bfr-xor (x y) (declare (xargs :guard t)) (let ((__function__ 'bfr-xor)) (declare (ignorable __function__)) (mbe :logic (bfr-case :bdd (acl2::q-xor x y) :aig (acl2::aig-xor x y)) :exec (if (and (booleanp x) (booleanp y)) (xor x y) (bfr-case :bdd (acl2::q-xor x y) :aig (acl2::aig-xor x y))))))
Theorem:
(defthm bfr-eval-bfr-xor (equal (bfr-eval (bfr-xor x y) env) (xor (bfr-eval x env) (bfr-eval y env))))
Theorem:
(defthm bfr-equiv-implies-bfr-equiv-bfr-xor-1 (implies (bfr-equiv x x-equiv) (bfr-equiv (bfr-xor x y) (bfr-xor x-equiv y))) :rule-classes (:congruence))
Theorem:
(defthm bfr-equiv-implies-bfr-equiv-bfr-xor-2 (implies (bfr-equiv y y-equiv) (bfr-equiv (bfr-xor x y) (bfr-xor x y-equiv))) :rule-classes (:congruence))